Technical Detalls

Three-dimensional interactions between atoms are the conceptual
foundation of molecular modeling. Existing deep learning frameworks
specialized for molecular modeling focus on lower dimensional
projections of these interactions, for example limiting their scope to
graph-based or scalar distance-based representations that
fundamentally fail to capture the full space of features that govern
molecular behavior.

layer {

name: "data"

type: "Mol GridData"

top: "data"

top: "label"

molgrid_data_param {
source: "small.types"
batch_size: 50
dimension: 23.5
resolution: 0.5
shuffle: true
balanced: true

gnina/libmolgrid is an open source library that exposes three-
dimensional grid-based molecular modeling capabilities in Python. It
can interface with popular deep learning frameworks including Caffe,
PyTorch, and Keras. It has built in support for gridding temporal data
from molecular dynamics simulations and processing it with one of the

random_rotation: true
ligmap:“lig"
recmap: "rec"

RNN classes provided by the chosen deep learning package. The }}’
efficiency of our high resolution three-dimensional grid-based input e it ool

representation is made possible by fully leveraging CUDA for gridding
and gradient propagation.

top: "unitl_pool"
pooling_param {
pool: MAX
kernel_size:2
stride: 2
}
}
layer {
name: "unitl_conv"
type: "Convolution”
bottom: "unitl_pool"
top: "unitl_conv"
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Q Caffe

Caffe is the original deep learning framework with which we
designed our library to be compatible, and all extended features
are currently available when using Caffe. This includes several
pre-trained and validated models and support for LSTM
processing of MD trajectories and sub-grid spatial recurrences.

Sample Code

layer {
name: "unitl_func"
type: "ReLU"

bottom: "unitl_conv"

top: "unitl_conv"

}

layer {
name: "unit2_pool"
type: "Pooling"

bottom: "unitl_conv"

top: "unit2_pool"
pooling_param {
pool: MAX
kernel_size:2
stride: 2

1

}

layer {
name: "unit2_conv"
type: "Convolution"

bottom: "unit2_pool"

top: "unit2_conv"

convolution_param {
num_output: 64
pad: 1
kernel_size:3
stride: 1
weight_filler {

type: "xavier"

}

}

}

layer {
name: "unit3_pool"
type: "Pooling"

bottom: "unit2_conv"

top: "unit3_pool"
pooling_param {
pool: MAX
kernel_size:2
stride:2
1

}

layer {
name: "unit3_conv"
type: "Convolution"

bottom: "unit3_pool"

top: "unit3_conv"

convolution_param {
num_output: 128
pad: 1
kernel_size:3
stride: 1
weight_filler {

type: "xavier"

}

1

}

layer {
name: "unit3_func"
type: "ReLU"

bottom: "unit3_conv"

top: "unit3_conv"

}

layer {
name: "pose_output"
type: "InnerProduct"
bottom: “unit3_conv"
top: "pose_output"
inner_product_param {
num_output: 2
weight_filler {
type:"xavier"
}
}
}

layer {
name: "loss"

type: "SoftmaxWithLoss"

bottom: "pose_output"
bottom: "label"
top: "loss"

}

layer {
name: "output"
type: "Softmax"
bottom: "pose_output"
top: "output"

}
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These features are fully supported in the Caffe-based interface, and = =0-
can be readily implemented by users who prefer other supported ©
frameworks via manipulations of generated grids. They include (1) C o5
decomposition of input into spatial recurrences, (2) processing of
temporally sequential data such as molecular dynamics trajectory 0-

frames, and (3) optimizing input grids using a trained network to Caffe

generate novel ligand density.

GPU Gridding and Gradients
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We use a two-step parallel approach to rapidly generate four dimensional grids of atom
density suitable for use as a neural network input. First, subgrids of spatially adjacent
threads parallelize over the atom list to compute the reduced set of atoms that possibly
overlap their region. Then they parallelize over grid points, using the greatly reduced atom
list to optimize this atom density calculation. The accumulation of atomic gradients also
uses parallel reductions to leverage the performance of the GPU.

PyTorch

https://github.com

Keras
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PyTorch support includes the ability to generate appropriate
three-dimensional grid-based inputs for molecular modeling
classification, regression, and generative modeling. The user
can access the generated grids to extend their applications to

(') PyTorch

temporal and recurrent spatial modeling.

Sample Code

import molgrid
importnumpyas np

import torch

import torch.nn asnn

import torch.nn.functional as F
import torch.optim as optim
from torch.nn importinit

import os

molgrid.set_random_seed(0)
torch.manual_seed(0)

np.random.seed(0)

class Net(nn.Module):
def __init__(self, dims):
super(Net, self).__init_ ()
self.pool0=nn.MaxPool3d(2)

self.convl = nn.Conv3d(dims[Q], 32, kernel_size=3, padding=1)

self.pool1=nn.MaxPool3d(2)

self.conv2 = nn.Conv3d(32, 64, kernel _size=3, padding=1)

self.pool2=nn.MaxPool3d(2)

self.conv3 = nn.Conv3d(64, 128, kernel _size=3, padding=1)

selflast_layer_size =

dims[1]//8 * dims[2]//8 * dims[3]//8 * 128
selffcl =nn.linear(selflast_layer_size, 2)

def forward(self, x):

x = self.pool O(x)

x= F.relu(self.conv1(x))

x = self.pool 1(x)

x= F.relu(self.conv2(x))

x = self.pool 2(x)

x = F.relu(self.conv3(x))
x=x.view(-1, self last_layer_size)
x=self.fcl(x)

return x

def weights_init(m):

if isinstance (m, nn.Conv3d) orisinstance(m, nn.Linear):
init.xavier_uniform_(m.weight.data)

Py
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batch_size = 50
datadir = os.path.dimame(__file_ )+'/data’
fname =datadir+"/small.types"

e =molgrid.Example Provider(

data_root=datadir+"/structs",
balanced=True shuffle=True)

e populate(fname)

gmaker = molgrid.GridMaker()
dims =gmaker.grid_dimensions(e.type_size())
tensor_shape = (batch_size,)+dims

model =Net(dims).to('cuda’)
model.apply(weights_init)

1r=0.01, momentum=0.9)

input_tensor = torch.zeros(tensor_shape,
dtype=torch float32, device='cuda’)
float_labels = torch.zeros(batch_size,

dtype=torch float32)

losses =[]
foriteration in range(10000):

#load data
batch =e.next_batch(batch_size)

gmaker.forward(batch, input_tensor,
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optimizer=optim.SGD(model.parameters(),

random_translation=0, mndom_rotation=True)

batch.extract_label(0, float_labels)
labels =float_labels.long().to('cuda')

optimizer.zero_grad()
output = model(input_tensor)

loss = F.cross_entropy(output,labels)

loss.backward()
optimizerstep()
losses.append(float(loss))

learning Cp
Keras

Keras support includes the ability to generate appropriate
three-dimensional grid-based inputs for molecular modeling
classification, regression, and generative modeling. The user
can access the generated grids to extend their applications to
temporal and recurrent spatial modeling.

Sample Code

import molgrid

import numpyas np

import tensorflow as tf

import tensorflow keras as keras
importkeras layers

import os

batch_size = 50
datadir = os.path.dimame(__file_ )+'/data’
fname =datadir+"/small .types"

e =molgrid.ExampleProvider(
data_root=datadir+"/structs",
balanced=True shuffle=True)

molgrid.set_random_seed(0) e populate(fname)

np.random.seed(0)

gmaker = molgrid.GridMaker()
dims =gmaker.grid_dimensions(e.type_size())

def create_model(dims):
. ( ) tensor_shape = (batch_size,)+dims

""" Creates a 3D CNN by defining and applyinglayers"""

input_layer =keras layers.Input(shape=dims) model =create_model(dims)

pool0 =keras.layers.MaxPooling3D(
data_format="channels_first")(input_layer)

convl = keras.layers.Conv3D(filters=32, kemel_size=3,
data_format="channels_first",activation="relu")(pool0)

pooll =keras.layers.MaxPooling3D(

labels = molgrid.MGrid 1f(batch_size)
input_tensor = molgrid.MGrid5f(*tensor_shape)

data_format="channels_first")(convi) losses =[]
conv2 = keras.layers.Conv3D(fil ters=64, kemel _size=3 foriteration in range(10000):
#load data

data_format="channels_first",activation="relu")(pool 1)
pool2 =keras.layers.MaxPooling3D(
data_format="channels_first")(conv2)
conv3 = keras.layers.Conv3D(filters=128, kemel _size=3,
data_format="channels_first",activation="relu")(pool2)

batch =e.next_batch(batch_size)

gmaker.forward(batch, input_tensor,
random_translation=0, andom_rotation=True)

batch.extract_label(0, labels)

loss = model.train_on_batch(input_tensor.tonumpy(),
labels.tonumpy())
losses.append(float(loss))

flatten =keras.layers.Flatten(
data_format="channels_first")(conv3)

fcl =keras layers.Dense(2,activation='softmax')(flatten) Inputs must reside in

CPU memory, resulting
in GPRU—-CPU—GPU
data transfer

# Define and retum model
model = keras.models.Model(inputs=input_layer, outputs=fcl)
model.compile(optimizer=
keras.optimizers.SGD(Ir=0.01, momentum=0.9),
loss="sparse_categorical _crossentropy")

return model

Keras Training
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As an objective measure of the application of
grid-based CNNs to affinity ranking and pose
prediction, we participated in the 2017 D3R

Challenge, a blinded community benchmark.

In the Pipeline

* Native layers for all supported platforms for common operations
* Internal gridding layers
* Pre-implemented recurrent layers

 Memory mapped molecular caches for memory efficient
and/or out-of-core training of large datasets

* Full support for vector atom typing

* Expand gridding options, especially to include spherical grids

« Enhanced documentation and tutorials
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