Technical Detalls

Three-dimensional interactions between atoms are the conceptual
foundation of molecular modeling. Existing deep learning frameworks
specialized for molecular modeling focus on lower dimensional
projections of these interactions, for example limiting their scope to
graph-based or scalar distance-based representations that
fundamentally fail to capture the full space of features that govern
molecular behavior.

layer {

name: "data"

type: "Mol GridData"

top: "data"

top: "label"

molgrid_data_param {
source: "small.types"
batch_size: 50
dimension: 23.5
resolution: 0.5
shuffle: true
balanced: true

gnina/libmolgrid is an open source library that exposes three-
dimensional grid-based molecular modeling capabilities in Python. It
can interface with popular deep learning frameworks including Caffe,
PyTorch, and Keras. It has built in support for gridding temporal data
from molecular dynamics simulations and processing it with one of the

random_rotation: true
ligmap:“lig"
recmap: "rec"

RNN classes provided by the chosen deep learning package. The }}’
efficiency of our high resolution three-dimensional grid-based input e it ool

representation is made possible by fully leveraging CUDA for gridding
and gradient propagation.

top: "unitl_pool"
pooling_param {
pool: MAX
kernel_size:2
stride: 2
}
}
layer {
name: "unitl_conv"
type: "Convolution”
bottom: "unitl_pool"
top: "unitl_conv"

Library Components ,
Flexible,

'Carnegie Mellon - University of Pittsburgh Joint Program in Computational Biology,

’Department of Computational and Systems Biology University of Pittsburgh

Q Caffe

Caffe is the original deep learning framework with which we
designed our library to be compatible, and all extended features
are currently available when using Caffe. This includes several
pre-trained and validated models and support for LSTM
processing of MD trajectories and sub-grid spatial recurrences.

Sample Code

layer {
name: "unitl_func"
type: "ReLU"

bottom: "unitl_conv"

top: "unitl_conv"

}

layer {
name: "unit2_pool"
type: "Pooling"

bottom: "unitl_conv"

top: "unit2_pool"
pooling_param {
pool: MAX
kernel_size:2
stride: 2

1

}

layer {
name: "unit2_conv"
type: "Convolution"

bottom: "unit2_pool"

top: "unit2_conv"

convolution_param {
num_output: 64
pad: 1
kernel_size:3
stride: 1
weight_filler {

type: "xavier"

}

}

}

layer {
name: "unit3_pool"
type: "Pooling"

bottom: "unit2_conv"

top: "unit3_pool"
pooling_param {
pool: MAX
kernel_size:2
stride:2
1

}

layer {
name: "unit3_conv"
type: "Convolution"

bottom: "unit3_pool"

top: "unit3_conv"

convolution_param {
num_output: 128
pad: 1
kernel_size:3
stride: 1
weight_filler {

type: "xavier"

}

1

}

layer {
name: "unit3_func"
type: "ReLU"

bottom: "unit3_conv"

top: "unit3_conv"

}

layer {
name: "pose_output"
type: "InnerProduct"
bottom: “unit3_conv"
top: "pose_output"
inner_product_param {
num_output: 2
weight_filler {
type:"xavier"
}
}
}

layer {
name: "loss"

type: "SoftmaxWithLoss"

bottom: "pose_output"
bottom: "label"
top: "loss"

}

layer {
name: "output"
type: "Softmax"
bottom: "pose_output"
top: "output"

}

customizable o 3 et
Integer and vector et o
Atom Typer atom typing s e o
}
1
Generate batches
that are balanced - -
by class, stratified Catte Trammg
IE)r(g\T dp;f by receptor, 06
shuffled, and more |
0.7
Fast gridding 0.67
_e. With optional 2 0.5
GridMaker 1% random < 04
’ transformations S ..
for data
augmentation & 02"
regularization 0.1
0.0

0 2000

Extended Functionality

Input

Spatial
recurrences

Dynamics

4000
Training lteration

GPU Performance

6000

3.6Ghz Core 17 4790

__ 1507 GTX 1070Ti
2 -
£ 125+
Q
g e 100+
T —
= 75+
These features are fully supported in the Caffe-based interface, and = =0-
can be readily implemented by users who prefer other supported ©
frameworks via manipulations of generated grids. They include (1) C o5
decomposition of input into spatial recurrences, (2) processing of
temporally sequential data such as molecular dynamics trajectory 0-

frames, and (3) optimizing input grids using a trained network to Caffe

generate novel ligand density.

GPU Gridding and Gradients

0

Generate arrays listing just the
atoms that overlap each subgrid.
e.g. consider subgrid 5:

T~

l‘-:
IR Active: 0.89
0/ : Inactive: 0.11
Convolution Fully Connected

Atom mask: 1 1 O O O <—MW—M““—MA“—WZWNN
—0 Exclusivescan: | O |1 12 | 2| 2 .

Final indices: 0 1

4

We use a two-step parallel approach to rapidly generate four dimensional grids of atom
density suitable for use as a neural network input. First, subgrids of spatially adjacent
threads parallelize over the atom list to compute the reduced set of atoms that possibly
overlap their region. Then they parallelize over grid points, using the greatly reduced atom
list to optimize this atom density calculation. The accumulation of atomic gradients also
uses parallel reductions to leverage the performance of the GPU.

PyTorch

https://github.com

Keras

8000

10000

PyTorch support includes the ability to generate appropriate
three-dimensional grid-based inputs for molecular modeling
classification, regression, and generative modeling. The user
can access the generated grids to extend their applications to

(') PyTorch

temporal and recurrent spatial modeling.

Sample Code

import molgrid
importnumpyas np

import torch

import torch.nn asnn

import torch.nn.functional as F
import torch.optim as optim
from torch.nn importinit

import os

molgrid.set_random_seed(0)
torch.manual_seed(0)

np.random.seed(0)

class Net(nn.Module):
def __init__(self, dims):
super(Net, self).__init_ ()
self.pool0=nn.MaxPool3d(2)

self.convl = nn.Conv3d(dims[Q], 32, kernel_size=3, padding=1)

self.pool1=nn.MaxPool3d(2)

self.conv2 = nn.Conv3d(32, 64, kernel _size=3, padding=1)

self.pool2=nn.MaxPool3d(2)

self.conv3 = nn.Conv3d(64, 128, kernel _size=3, padding=1)

selflast_layer_size =

dims[1]//8 * dims[2]//8 * dims[3]//8 * 128
selffcl =nn.linear(selflast_layer_size, 2)

def forward(self, x):

x = self.pool O(x)

x= F.relu(self.conv1(x))

x = self.pool 1(x)

x= F.relu(self.conv2(x))

x = self.pool 2(x)

x = F.relu(self.conv3(x))
x=x.view(-1, self last_layer_size)
x=self.fcl(x)

return x

def weights_init(m):

if isinstance (m, nn.Conv3d) orisinstance(m, nn.Linear):
init.xavier_uniform_(m.weight.data)

Py

‘orch Training

batch_size = 50
datadir = os.path.dimame(__file_)+'/data’
fname =datadir+"/small.types"

e =molgrid.Example Provider(

data_root=datadir+"/structs",
balanced=True shuffle=True)

e populate(fname)

gmaker = molgrid.GridMaker()
dims =gmaker.grid_dimensions(e.type_size())
tensor_shape = (batch_size,)+dims

model =Net(dims).to('cuda’)
model.apply(weights_init)

1r=0.01, momentum=0.9)

input_tensor = torch.zeros(tensor_shape,
dtype=torch float32, device='cuda’)
float_labels = torch.zeros(batch_size,

dtype=torch float32)

losses =[]
foriteration in range(10000):

#load data
batch =e.next_batch(batch_size)

gmaker.forward(batch, input_tensor,

gnina/libmolgrid: Versatile grid-based molecular input library optimized for machine

Jocelyn Sunseri’2 and David Ryan Koes?

optimizer=optim.SGD(model.parameters(),

random_translation=0, mndom_rotation=True)

batch.extract_label(0, float_labels)
labels =float_labels.long().to('cuda')

optimizer.zero_grad()
output = model(input_tensor)

loss = F.cross_entropy(output,labels)

loss.backward()
optimizerstep()
losses.append(float(loss))

learning Cp
Keras

Keras support includes the ability to generate appropriate
three-dimensional grid-based inputs for molecular modeling
classification, regression, and generative modeling. The user
can access the generated grids to extend their applications to
temporal and recurrent spatial modeling.

Sample Code

import molgrid

import numpyas np

import tensorflow as tf

import tensorflow keras as keras
importkeras layers

import os

batch_size = 50
datadir = os.path.dimame(__file_)+'/data’
fname =datadir+"/small .types"

e =molgrid.ExampleProvider(
data_root=datadir+"/structs",
balanced=True shuffle=True)

molgrid.set_random_seed(0) e populate(fname)

np.random.seed(0)

gmaker = molgrid.GridMaker()
dims =gmaker.grid_dimensions(e.type_size())

def create_model(dims):
. () tensor_shape = (batch_size,)+dims

""" Creates a 3D CNN by defining and applyinglayers"""

input_layer =keras layers.Input(shape=dims) model =create_model(dims)

pool0 =keras.layers.MaxPooling3D(
data_format="channels_first")(input_layer)

convl = keras.layers.Conv3D(filters=32, kemel_size=3,
data_format="channels_first",activation="relu")(pool0)

pooll =keras.layers.MaxPooling3D(

labels = molgrid.MGrid 1f(batch_size)
input_tensor = molgrid.MGrid5f(*tensor_shape)

data_format="channels_first")(convi) losses =[]
conv2 = keras.layers.Conv3D(fil ters=64, kemel _size=3 foriteration in range(10000):
#load data

data_format="channels_first",activation="relu")(pool 1)
pool2 =keras.layers.MaxPooling3D(
data_format="channels_first")(conv2)
conv3 = keras.layers.Conv3D(filters=128, kemel _size=3,
data_format="channels_first",activation="relu")(pool2)

batch =e.next_batch(batch_size)

gmaker.forward(batch, input_tensor,
random_translation=0, andom_rotation=True)

batch.extract_label(0, labels)

loss = model.train_on_batch(input_tensor.tonumpy(),
labels.tonumpy())
losses.append(float(loss))

flatten =keras.layers.Flatten(
data_format="channels_first")(conv3)

fcl =keras layers.Dense(2,activation='softmax')(flatten) Inputs must reside in

CPU memory, resulting
in GPRU—-CPU—GPU
data transfer

Define and retum model
model = keras.models.Model(inputs=input_layer, outputs=fcl)
model.compile(optimizer=
keras.optimizers.SGD(Ir=0.01, momentum=0.9),
loss="sparse_categorical _crossentropy")

return model

Keras Training

0.8 -

2000

GPU Memory Utilization

(MB)

>

Maximum GPU Memor

o

4000

6000

Training Iteration

2000+

=

U1

o

o
|

1000+

500+

Blinded Independent Evaluation

Caffe

3R

PyTorch

Keras

CPU Time (estimatedO0)

8000

0.8 -
0.7 -
0.6 -
()]
3 0.5
-
S 0.4
©
@ 0.3-
0.2 -
0.1-
1 0.0 | 1 I 1 1
10000 0 2000 4000 6000 8000 10000
Training Iteration
CPU Performance GPU Speedup vs CPU
& 100-
O
S
o 80-
P
]
G 60+
)
o
o 401
)
£®)
0 20-
Q
n
O_
Caffe PyTorch Keras Caffe PyTorch Keras

As an objective measure of the application of
grid-based CNNs to affinity ranking and pose
prediction, we participated in the 2017 D3R

Challenge, a blinded community benchmark.

In the Pipeline

* Native layers for all supported platforms for common operations
* Internal gridding layers
* Pre-implemented recurrent layers

 Memory mapped molecular caches for memory efficient
and/or out-of-core training of large datasets

* Full support for vector atom typing

* Expand gridding options, especially to include spherical grids

« Enhanced documentation and tutorials

References

Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., & Koes, D. R. (2017). Protein—Ligand scoring with

Convolutional neural networks. Journal of chemical information and modeling, 57(4), 942-957.
Sunseri, J., King, J. E., Francoeur, P. G., & Koes, D. R. (2018). Convolutional neural network scoring and

Target Rank | MCC Method Vina

JAK?2 (SC2) | 3/27 | 0.4a | ONN affinity 4 o
refine

VEGFR2 1/33 | 0.3 | CNNscoring |5,
rescore

p38a 9/29 | 0.1 | CNNaffinity |,
refine

JAK2 (SC3) | 2718 | o0.23 | ONN affinity |4 o
refine

TIE2 /1T | gpg | CNN aflinity |, o
(tie) rescore

CNN affinity

ABL1 N/A 0.56 rescore/refine | 1.00

(tie)

minimization in the D3R 2017 community challenge. Journal of computer-aided molecular design, 1-16.

Ragoza M, Turner L, Koes DR. Ligand pose optimization with atomic grid-based convolutional neural
networks. arXiv preprint arXiv:1710.07400. 2017 Oct 20

/gnina/libmolgrid

This work is supported RO1GM108340 from the National Institute of General Medical
Sciences and a grant from Relay Therapeutics.

