GNINA: Deep Learning tor Molecular Docking

Paul Francoeur, Matthew Ragoza, Rachel Rosenzweig, Jocelyn Sunseri, David Ryan Koes o
I

— .l —

Department of Computational and Systems Biology, University of Pittsburgh
http://github.com/gnina/

lterative Refinement

Abstract Datasets >, e Pose Optimization

Molecular docking is an important tool for computational drug discovery that aims SMINA docked and minimized poses are used for training. :;OSS gradients of a trained model can be 4500 Bect

. 2 . . . ackpropagated onto the input grid. _ es
to predict the binding pose of a ligand (drug) to a target protein. Identifying a ? They indicate how the input can be 4000 First Optimization
correctly oriented pose requires a scoring function that has a global optimum close Q«@ Ay . . 3500- Second Iteration
to the experimentally observed pose. Additionally, it should be differentiable with RedOCked crOSS'DOCked ‘ chan_ged to increase its score. These Third Iteration
respect to atomic positions so that it can be used for gradient-based pose PDBbind refined S f Pock o gradients can be further propagated 30007
5 tliomization P J P Ind retined set tructures from Focketome onto atom centers as a vector quantity D .

P ' 4053 complexes 2923 distinct pockets that can then be interpreted as a force in g
We describe a differentiable grid-based convolutional neural network scoring 52,166 ligand poses 27,142 receptor structures a pose optimization algorithm. Q- 2000-
function and explore its application in an end-to-end GPU-optimized molecular affinity data for all ligands || 4,138,117 non-redundant ligand poses 7~ + 15004
docking workflow. We show that convolutional neural networks trained on oy Scorg 095 Akl
. . . N . 1000- . o

experimental data can successfully identify correct binding modes and meaningfully =5 ol A model trained on docked poses does not Adding CNN optimized structures
rank and score compounds. We describe visualization approaches that map the o '%3 learn to properly steric clashes, as such 500 - to the training set corrects cases
CNN score back to the atomic inputs to help guide medicinal chemistry optimization Du'l'u Represe n'I'U'l'lon A7 gl 4 2 \ interactions are not present in the training ; wf]g;e ’Z’;d’:_’;derlo‘\’/V:SSSCeOHﬁ%?‘fifzt’)lfo
and provide insight into the functioning of the neural network. Source code is Scorel 027 ) corek- 0.6 ‘ Zil;d?g’g ﬁf;‘i?ee; e‘g’ie”t when the model is 4 3 -2 -1 0 1 2 3 4 goid0ne P 4
available under an open-source BSD/GPL license as part of the gnina package. 24x24x24A grid at 0.5A resolution S S e g pose RMSD Change

14 ligand and 14 receptor atom types
Continuous Gaussian density

° ° ° v g0 - ®
Background CUDA optimized grid generation Hyperparameter Optimization : : «  Docking & DR Srond Challenge:
PY cnn docked cnnrescore cnn docked cnn rescore .
o o affinity affinity scoring scoring vina
. . . . . . . 1N i O AN ca : : -0. . .
Protein-ligand scoring provides a metric of binding strength 50 parameters for training and the network topology = .o f . 500 Monte Carlo sampling is i el el Bl BN
between small molecules and target proteins and is a critical ° o were explored both automatically and rationally 075 . performed with grid- R i i D Wil
b . £ | | docki d b d d ru I n I n o . ] . . , s o . accelerated Vina scoring.  vegirz  0.366 0.484 0.434 0.448  0.414
N zlu _routlrlf O‘d mlo ecular (;c ing an s;c(;ucture— Iase_CI ryfg %prgaﬂ_s Systematic Each parameter was individually varied v & 0 400 _ Improved poses identified ., WG 033 Va9 7 ot
accurate ligand poses and predict the binding affinity of the Clustered cross-validation splits datasets |O O (A A < <>| yes P S £ optimized and ranked sy [([OS8T 0% oz ot 00w
_ _ L . . . Gaussian process model of the parameter space and 70 using CNN scoring. o 0 648 B o | oos | oo
to avoid including highly similar examples . . < 300 ¢ 7 g
« ligand for the protein. . 11ng Mgnty P suggest the most informative parameters to evaluate £ c
_ _ _ _ o _ in both the training set and test set. Redock O OlA Alo <>| = = it | 06 . 00 01z 07
. . . )
One approach for scoring is to use machine learning. Traditionally, this has set is clustered using protein sequence and ool size RF+GA A random forest & . 500 |
required manually selecting molecular features, such as pairwise interactions and ligand fingerprint similarity. Cross-dock set e model of the parameters is 265 & Default2017 .arkOVChain B e Carlo @Néﬁeﬁﬁe‘ment
counts of typical chemical interaction patterns, that are used to train a model. is clustered using ProBis pocket similarity. OO0 A Alo <>| v deco.ex trained to predict model ° +  Default2018 A, Score
However, other, non-parametric, machine learning models can learn the most momentum performance and a genetic ‘GE) v  HiRes Pose 100 .arkov e Cario Best Dl A
important features directly from low-level representations of the data. pool2_size algorithm used to search for © o HiRes Affinity PosEey ¥ |
Hidden 2 > - native caffe A custom fork of the Caffe deel:) ranklossmuft novel arameters with the GL) d - & ATt
Neural networks are a supervised machine learning - £ s nvipia. - cudnn learning framework with support i hect repdicted erformance “ 050 052 054 056 058  0.60 .arkov Chain Monte Carlo ,L/}A N
algorithm inspired by the nervous system. A basic network 3 E for cuDNN accelerated 3D layers P P Pearson R
. . . 1
consists of an input layer, one or more hidden layers, and an Sg and on-the-fly molecular
output layer of interconnected nodes. Each hidden node Sk gridding can train 100X faster on . N
computes a feature that is a non-linear function of the e a GPU than on a single CPU. cross Vu | u'l'lon Per ormance MO eI1S
weighted input it receives from the nodes of the previous 980 1080Ti  Xp  TianV V100
layer. A neural netwo_rk with a ﬁr_nte num_be_r of n_odes can Data augmentation is performec (1): "4 — NotAugmentec - Redocked Affinity Redocked Pose Default2017 Baseline model for optimization
apprOX|mate any COntanOUS funCtIOn tO Wlthln a glven errOr by app|y|ng random rotatlons anc UO:S | spav b el §3 :_:?_\ngtmented _ . o . §
over a bounded input domain. translations (+6A) to protein-ligand 2_,  j | Train 2 0.65 s " ---oe--- " T B 5 2|5 2l |5 AT
o - 2 £, — " --oalo——- —= @ 5 el B El.l_|® S, | S |F| Affinity
nput data are fed forward through the network, and a prediction is output by the complex structures. This reduces <o g = 0.60 ~ 8807 31853558 & 3353 & 5 2fa 3]
. . . . . . . . y: bt < X || €2l X | = | € |2| = N 5 | €S (2] X
ast layer. A neural network is trained by iteratively updating its weights using back- overfitting and compensates for the  os! 1 p 2 e ==t o c3 I E 30183 = [SI0FSIZ|8S1EE]; |2
oropagation and stochastic gradient descent. Gradients are calculated with respect coordinate-frame dependency of a 0 500 1000 1500 2000 0 500 1000 1500 2000 £ [ee— 1 c——tge— e 2206 TIRIEIRET I ST (R E[E pose
- . . ration ration - ® O (o8) (o8) (o2) Lg) :'O
to a loss function such as the mean squared error between predictions and the 3D grid representation. 3 0.50 5 2 & & & & & & 3 |5 Score
Q- 2 |3
ground truth labels. ~l T 0> ’

. _ _ . — Models are trained to obptimize both a lodistic ' Default2017 Default2018 HiRes Affinity HiRes Pose Vina Default2017 Default2018 HiRes Affinity HiRes Pose Vina . _ _
Convolutional neural networks are the state-of-the-art in image recognition. : Low EMSD Fose loss for distinguishing bztween low RMSD ?<2A) o Default2018 Optimized model with network-in-
Convolutional layers apply a small non-linear kernel function iteratively across the K . A e 0.70 Crossdocked Affinity Crossdocked Pose network architecture and fast evaluation
. . . . & and high RMSD (>4A) poses (classification) and a
input to produce a feature map. A function recognizes a local spatial feature of the . . c c 908 :
input. As convolutions are applied to feature maps, higher order features in the 2 mean squared error L2 loss for affinity S 0.65 2 0 w| |s|| |5 | |s|| |s | | S £ |,

] .. . © = S = = S S = S I ini
nput are recognized PP P>, Nig : prediction (regression). Low RMSD poses are g 43%0107 - -1 - - T - P - R AT D I | B
- ” _2=;—:ice0—xlerimén ’ I I I Tal 50'60 ' % % éégéégé QG-J éégéégé%’ Eégg -
spk = predicted - Bxperiment - QN |y penalized for over predicting the affinity. S 2 Py 12131553853 212/5028k212 4 8EimT
— S 0.55 e T 22 06 0080 gl IR A A L A
| | . . . . —Aff?n?tyRMSETes.t g ___.!.___ "'...'—' E== ’———- %m : ____'____ &i ‘35, B &i m>< X @i n>'§ (2 fé Score
| | A fixed learning rate is dynamically = I e et 3 0.50 ° 2 z |3
. . 2.00 : . )
. stepped when training performance ¢{ | I estanion & a - 0.5
: : : £l A Y o g e - : : :
-~ . . StOpS. ImprOVIr(]jg' Thlls enables early §1'5° e ““-- __________ S 0-45 Default2017 Default2018 HiRes Affinity HiRes Pose Vina Default2017 Default2018 HiRes Affinity HiRes Pose Vina HlRES POSE _Igh reSOIUtlon pose SEIECtlon mOdeI
- - Dog: 0.99 termination and quick convergence. A = = |3
Cat: 0.01 test iteration consists of 1000 trainin U e S E— | 0.70 . : : 5 20| | g 20| |5 ‘B
. . ) . 9 075 //' """""""""""""""""""""" o 7 Left Selecting the lowest RMSD pose < e Right Performance on ¥ = S = S 5 |2 Affinity
iterations with batch size 50. S 065 : : : S 0.65 the weekly Continous g2 o _p Slglal 8 || 3t 2 S5lila | O |3
TP et & for scoring results in a slight B . . 2 g f 1P| & |83 | & 3| 23S| 5 |z
| = 0,60 improvement in affinity prediction. 5 o.eo Evaluation olegand = | /”o_« 2| 2§ ¢ X |3 Z |83 x | S z |2 &
| | — S _ O . Pose Prediction (CELPP) 3 2 'S¢l = 3B =S58 s
Convolution Convolution Fully Connected 5055 o T 4— Right A r_and.om, ur?clu._s*ter_ed, 5055 oo is less impressive than 2 2 & | e |3 m |33 o | S m i8] 8 |2
Feature Maps Feature Maps Traditional NN ° ° 5 cross-validation split will give an % 050 ° benchmark evaluation. Vina Docking = & = & 2 s | ® Pose
© 0.50 . . . ;
‘I'0m|c 0'|'en'l'|u S & unrealistic estimate of performance & , | - CNN Docking e & A & A O 3| Score
] 0.45 11 13 16 18 20 22 23 24 25 26 27 28 30 31 33 E ‘%
Convolution Fully-connected 045 0 ce Select RMSD Select ON NEW targets. Clustered Random CELPP Week 3
e T et HiRes Affinity Default 2018 Vina HiRes Affinity High resolution affinity model
weight 3 —— Wwelght 3 o |2
T egnts : : ol | i
Q Q 12 12 S | B | = = 5 S |I| Affinity
2159 0353 09 <Rl @|lal| 2|3
12 S| >|sl&S| =28 & | | e| =|§< S| 2 |4
< el < c |2 < 3 5| % X X
, o _ _ NitrogenDonor 10 10 S S’ ACAREREE: ;(g 3 é 33 s |3 ”
(Left) 2D convolutional kernels for recognizing horizontal and vertical edges. 10 S e iE | mlilf o | °|nlid|< 8] E |
(Above) Convolution layers apply the same weights to subregions of the < M//‘ 8 8 - X" o;é X |2 RS % Pose
input. The shared weights reduce the number of parameters in the model. R S S s 8 e - & A 3 O || Score
| fl S 6 S 6 O S
Protein-ligand scoring is a natural generalization of image ﬁ/v\a/f E E E
- . (e . . . h ?
recognition where the full 3D “images” of protein-ligand L 4 4 4 Acknowledgemenis
cor_nplexes are u_sed_ for tr_ammg._ConvqutlonaI neural_ nets : , This research was supported by RO1IGM108340 from the
trained on protein-ligand interactions have the potential to OxygenAcceptor : National Institute of General Medical Sciences and
provide substantially more accurate scoring functions for o[ >Pegrman - 0-538, RMpE = 3714 o [ >Pegman - -5 RMpE = 1686 0 opegrman = 0443, RMpE =887 contributions from aigrant.org, Google Cloud, NVIDIA
I ' 0 2 4 §) 8 10 12 0 2 4 §) 8 10 12 0 2 4 §) 8 10 12 I I I I
improved docking. AliphaticCarbon OxygenDonorAcceptor [ 3 Experment Experment Experment Corporation, and the University of Pittsburgh Center for

Simulation and Modeling.



