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Abstract
Molecular docking is an important tool for computational drug discovery that aims 
to predict  the binding pose of  a  ligand (drug)  to a target  protein.  Identifying a 
correctly oriented pose requires a scoring function that has a global optimum close 
to the experimentally observed pose. Additionally, it should be differentiable with 
respect  to  atomic  positions  so  that  it  can  be  used  for  gradient-based  pose 
optimization. 
We  describe  a  differentiable  grid-based  convolutional  neural  network  scoring 
function and explore its  application in  an end-to-end GPU-optimized molecular 
docking  workflow.  We  show  that  convolutional  neural  networks  trained  on 
experimental data can successfully identify correct binding modes and meaningfully 
rank and score compounds.  We describe visualization approaches that map the 
CNN score back to the atomic inputs to help guide medicinal chemistry optimization 
and provide insight  into the functioning of  the neural  network.   Source code is 
available under an open-source BSD/GPL license as part of the gnina package.

Background
Protein-ligand  scoring  provides  a  metric  of  binding  strength 
between small  molecules and target proteins and is a critical 
subroutine  of  molecular  docking  and  structure-based  drug 
design.  An  ideal  scoring  function  would  correctly  identify 
accurate  ligand poses and predict  the binding affinity  of  the 
ligand for the protein.

One  approach  for  scoring  is  to  use  machine  learning.   Traditionally,  this  has 
required manually selecting molecular features,  such as pairwise interactions and 
counts  of  typical  chemical  interaction  patterns,  that  are  used  to  train  a  model. 
However,  other,  non-parametric,  machine  learning  models  can  learn  the  most 
important features directly from low-level representations of the data.
Neural  networks  are  a  supervised  machine  learning 
algorithm inspired by the nervous system. A basic network 
consists of an input layer, one or more hidden layers, and an 
output  layer  of  interconnected  nodes.  Each  hidden  node 
computes  a  feature  that  is  a  non-linear  function  of  the 
weighted  input  it  receives  from the  nodes  of  the  previous 
layer.  A neural  network with a  finite  number of  nodes can 
approximate any continuous function to within a given error 
over a bounded input domain.
Input data are fed forward through the network, and a prediction is output by the 
last layer. A neural network is trained by iteratively updating its weights using back-
propagation and stochastic gradient descent.  Gradients are calculated with respect 
to a loss function  such as the mean squared error between predictions and the 
ground truth labels.
Convolutional  neural  networks  are  the  state-of-the-art  in  image  recognition. 
Convolutional layers apply a small non-linear kernel function iteratively across the 
input to produce a feature map.  A function recognizes a local spatial feature of the 
input.  As convolutions are applied to feature maps, higher order features in the 
input are recognized.

Protein-ligand  scoring  is  a  natural  generalization  of  image 
recognition  where  the  full  3D  “images”  of  protein-ligand 
complexes  are  used  for  training.  Convolutional  neural  nets 
trained  on  protein-ligand  interactions  have  the  potential  to 
provide  substantially  more  accurate  scoring  functions  for 
improved docking.
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(Left) 2D convolutional kernels for recognizing horizontal and vertical edges. 
(Above) Convolution layers apply the same weights to subregions of the 
input.  The shared weights reduce the number of parameters in the model.

Datasets
SMINA docked and minimized poses are used for training.

Data Representation
24x24x24Å grid at 0.5Å resolution
14 ligand and 14 receptor atom types
Continuous Gaussian density
CUDA optimized grid generation

Training
Clustered cross-validation splits datasets 
to avoid including highly similar examples 
in both the training set and test set. Redock 
set is clustered using protein sequence and 
ligand fingerprint similarity. Cross-dock set 
is clustered using ProBis pocket similarity.  

A custom fork of the Caffe deep 
learning framework with support 
for cuDNN accelerated 3D layers 
and  on-the-fly  molecular 
gridding can train 100X faster on 
a GPU than on a single CPU.

Data  augmentation  is  performed 
by  applying  random  rotations  and 
translations (±6Å) to protein-ligand 
complex  structures.   This  reduces 
overfitting and compensates for the 
coordinate-frame  dependency  of  a 
3D grid representation.

Models are trained to optimize both a logistic 
loss for distinguishing between low RMSD (<2Å) 
and high RMSD (>4Å) poses (classification) and a 
mean  squared  error  L2  loss  for  affinity 
prediction  (regression).   Low  RMSD  poses  are 
only penalized for over predicting the affinity.

A  fixed  learning  rate  is  dynamically 
stepped  when  training  performance 
stops  improving.  This  enables  early 
termination  and  quick  convergence.  A 
test iteration consists of 1000 training 
iterations with batch size 50.

Hyperparameter Optimization
50 parameters for training and the network topology 
were explored both automatically and rationally
Systematic Each parameter was individually varied
Bayesian  Spearmint  was  used  to  construct  a 
Gaussian process model of the parameter space and 
suggest the most informative parameters to evaluate

RF+GA   A  random  forest 
model  of  the  parameters  is 
trained  to  predict  model 
performance  and  a  genetic 
algorithm used to search for 
novel  parameters  with  the 
best predicted performance

CNN Atomic Potentials

Docking

Pose Optimization
Loss gradients of a trained model can be 
backpropagated  onto  the  input  grid. 
They  indicate  how  the  input  can  be 
changed  to  increase  its  score.   These 
gradients  can  be  further  propagated 
onto atom centers as a vector quantity 
that can then be interpreted as a force in 
a pose optimization algorithm.

Iterative Refinement

Cross Validation Performance

Redocked
PDBbind refined set
4053 complexes
52,166 ligand poses
affinity data for all ligands

Cross-Docked
Structures from Pocketome
2923 distinct pockets
27,142 receptor structures
4,138,117 non-redundant ligand poses
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Score = 0.27 Score = 0.66

A model trained on docked poses does not 
learn to properly steric clashes, as such 
interactions are not present in the training 
set.  This becomes evident when the model is 
used to optimize a pose.

Adding CNN optimized structures 
to the training set corrects cases 
where the model was confidently 
wrong and improves sensitivity to 
steric clashes.

Score = 0.86

Score = 0.93

First Optimization

Markov Chain Monte Carlo

Models
Default2017 Baseline model for optimization

Default2018  Optimized  model  with  network-in-
network architecture and fast evaluation

HiRes Pose High resolution pose selection model

HiRes Affinity High resolution affinity model
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Markov Chain Monte Carlo

Markov Chain Monte Carlo

Best
Poses

cnn docked 
affinity

cnn rescore 
affinity

cnn docked 
scoring

cnn rescore 
scoring vina

cat 0.0701 0.154 -0.0351 0.178 0.179

p38a -0.0784 -0.116 -0.329 -0.305 -0.0631

vegfr2 0.366 0.484 0.434 0.448 0.414

jak2 0.428 0.338 0.39 0.27 0.106

jak2 
sub3 0.68 0.369 -0.372 0.159 -0.633

tie2 0.648 0.835 0.136 -0.078 0.561

abl1 0.634 0.745 0.005 0.182 0.713

Score

Affinity

Monte Carlo sampling is 
performed with grid-
accelerated Vina scoring.  
Improved poses identified 
during sampling are 
optimized and ranked 
using CNN scoring.

CNN Refinement

D3R Grand Challenge 3 

NitrogenDonor

OxygenAcceptor

OxygenDonorAcceptorAliphaticCarbon

Left Selecting the lowest RMSD pose 
for scoring results in a slight 
improvement in affinity prediction. 

Right A random, unclustered, 
cross-validation split will give an 
unrealistic estimate of performance 
on new targets.
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CNN Docking

Right Performance on 
the weekly Continous 
Evaluation of Ligand 
Pose Prediction (CELPP) 
is less impressive than 
benchmark evaluation.


