

Computational Methods for Biological Modeling and Simulation Guest Lecture Computational Drug Discovery

David Koes

10/5/2017

Drug Development

- 1. Does the compound do what you want it to?
- Does the compound **not** do what you **don't** want it to?
- 3. Is what you want it to do the right thing?

Ligand Based

- similarity to known binder
- **Receptor Based**
 - dock and score
- Interaction Based
 - pharmacophore

Goal: Find something that binds (potency)

Docking

Determine the **conformation** and **pose** of a ligand at a docking site

Challenge is to find conformation and pose with the best **score**

Two Phase Docking

1. Global Pose Estimation

Search Algorithms

Systematic

search (BFS, DFS, A*)

Stochastic

Monte Carlo

Genetic/Evolutionary algorithms

maintain a population of candidates mutation and crossover

Monte Carlo

- 1. pick a random neighbor of q_i , which we will call q_j , with probability $\frac{1}{d}$, or $q_j = q_i$ with probability $1 \frac{d_i}{d}$ if the degree of node $i(d_i)$ is less than d
- 2. if $E_j \leq E_i$ then move to q_j
- 3. if $E_j > E_i$ then with probability $e^{-(E_j E_i)/kT}$ move to q_j , otherwise stay in q_i

What is a neighbor?

What is E_i?

Since our goal is optimization, what else do we have to do?

Local Optimization

Broyden–Fletcher–Goldfarb–Shanno (BFGS)

- 1. Obtain a direction \mathbf{p}_k by solving $B_k \mathbf{p}_k = -\nabla f(\mathbf{x}_k)$.
- Perform a one-dimensional optimization (line search) to find an acceptable stepsize α_k in the direction found in the first step, so α_k = arg min f(x_k + αp_k).
 Set s_k = α_kp_k and update x_{k+1} = x_k + s_k.

4.
$$\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k).$$

5. $B_{k+1} = \mathbf{B}_k + \frac{\mathbf{y}_k \mathbf{y}_k^{\mathrm{T}}}{\mathbf{y}_k^{\mathrm{T}} \mathbf{s}_k} - \frac{B_k \mathbf{s}_k \mathbf{s}_k^{\mathrm{T}} B_k}{\mathbf{s}_k^{\mathrm{T}} B_k \mathbf{s}_k}.$

Approximation of Hessian

Receptor Based: Scoring

van der Waals a = 12, b = 6 Lennard-Jones potential

Coulomb's Law q: partial charges D: dielectrict constant

AutoDock Vina

Weight	Term
-0.0356	gauss ₁
-0.00516	gauss ₂
0.840	Repulsion
-0.0351	Hydrophobic
-0.587	Hydrogen bonding
0.0585	N _{rot}

AR

Journal of Chemical Information and Modeling

Ideally, score would equal affinity – but this is an unsolved problem.

State of the Art

Pose Prediction

Binding Discrimination

Affinity Prediction

Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. *PLoS ONE* 11(5): e0155183. doi:10.1371/journal.pone.0155183

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Key Idea: Leverage "big data" 231,655,275 bioactivities in PubCher

- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind

Machine Learning

Features $X \rightarrow Model \rightarrow y$ Prediction

Neural Networks

Neural Network Example

Neural Networks

The universal approximation theorem

states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

Backpropagation

Backpropagation is an efficient algorithm for computing the partial derivatives needed by the gradient descent update rule. For a training example x and loss function L in a network with N layers:

1. Feedforward. For each layer *l* compute

$$a^l = \sigma(z^l)$$

where z is the weighted input and a is the activation induced by x (these are vectors representing all the nodes of layer l).

2. Compute output error

$$\delta^N = \nabla_a L \odot \sigma'(z^N)$$

where $\nabla_a L_j = \partial L / \partial a_j^N$, the gradient of the loss with respect to the output activations. \odot is the elementwise product.

3. Backpropagate the error

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

4. Calculate gradients

$$\frac{\partial L}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \text{ and } \frac{\partial L}{\partial b_j^l} = \delta_j^l$$

Image Recognition

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

Protein-Ligand Representation

(R,G,B) pixel \rightarrow (Carbon, Nitrogen, Oxygen,...) **voxe** The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Atom Density

$$A(d,r) = \begin{cases} e^{-\frac{2d^2}{r^2}} & 0 \le d < r\\ \frac{4}{e^2r^2}d^2 - \frac{12}{e^2r}d + \frac{9}{e^2} & r \le d < 1.5r\\ 0 & d \ge 1.5r \end{cases}$$

Gaussian

Atom Types

Ligand

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophobe **Bromine** Chlorine Fluorine lodine Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor Oxygen OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur SulfurAcceptor

Receptor

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophobe

> Calcium Iron Magnesium Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor OxygenXSDonorAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur Zinc

Training Data

Pose Prediction

337 protein-ligand complexes

- curated for electron density
- diverse targets
- <10µM affinity
- generate poses with Vina
 - 745 <2Å RMSD (actives)
 - 3251 >4Å RMSD (decoys)

4056 protein-ligand complexes

- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose
 - 8,688 <2Å RMSD (actives)
 - 76,743 >4Å RMSD (decoys)

Training Data

Binding Discrimination

D U D • E

102 targets

- 22,645 actives
- 1,407,145 decoys
- <10µM affinity
- true poses unknown
- trust docked poses

Affinity Prediction

- 8,688 low RMSD poses
- assign known affinity
- regression problem

Test

Model Evaluation

CSAR: >90% similar targets kept in same fold DUD-E & PDBbind: >80% similar targets kept in same fold

Clustered Cross-validation

Train

Model Training

Custom MolGridDataLayer

Parallelize over *atoms* to obtain a mask of atoms that overlap each grid region Use exclusive scan to obtain a list of atom indices from the mask Parallelize over *grid points*, using reduced atom list to avoid O(N_{atoms}) check

Data Augmentation

Model Optimization

Atom Types

- Vina (34)
- element-only (18)
- ligandprotein (2)

Atom Density Type

- Boolean
- Gaussian

Pooling

Resolution

Depth

Width

Fully Connected Layers

Radius Multiple

Visualization

masking

gradients

layer-wise relevance

Pose Sensitivity

Partially Aligned Poses

Pose Prediction (CSAR)

Pose Prediction (PDBbind)

Binding Determination

D U D • E

102 targets

- 22,645 actives
- 1,407,145 decoys
- <10µM affinity
- true poses unknown
- use docked poses

Affinity Prediction

Beyond Scoring

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Beyond Scoring

Minimizing Low RMSD Poses

Iterative Refinement

Related Work

MolecuLeNet: A continuous-filter convolutional neural network for modeling quantum interactions

Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller (Submitted on 26 Jun 2017)

Automatic chemical design using a data-driven continuous representation of molecules

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, Alán Aspuru-Guzik

(Submitted on 7 Oct 2016 (v1), last revised 6 Jan 2017 (this version, v2))

AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

Izhar Wallach, Michael Dzamba, Abraham Heifets (Submitted on 10 Oct 2015)

ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost

Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg (Submitted on 27 Oct 2016 (v1), last revised 6 Feb 2017 (this version, v4))

Convolutional Networks on Graphs for Learning Molecular Fingerprints

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams (Submitted on 30 Sep 2015 (v1), last revised 3 Nov 2015 (this version, v2))

Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity

Joseph Gomes, Bharath Ramsundar, Evan N. Feinberg, Vijay S. Pande (Submitted on 30 Mar 2017)

Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules

Alessandro Lusci*†, Gianluca Pollastri†, and Pierre Baldi*‡ [†] School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland [‡] Department of Computer Science, University of California, Irvine, Irvine, California 92697, United States

J. Chem. Inf. Model., 2013, 53 (7), pp 1563–1575 DOI: 10.1021/ci400187y Publication Date (Web): June 24, 2013

Low Data Drug Discovery with One-shot Learning

Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, Vijay Pande (Submitted on 10 Nov 2016)

Massively Multitask Networks for Drug Discovery

Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, Vijay Pande (Submitted on 6 Feb 2015)

Protein–Ligand Scoring with Convolutional Neural Networks

Matthew Ragozatt, Joshua Hochulit, Elisa Idrobo[§], Jocelyn Sunserii, and David Ryan Koes^{*}i [†]Department of Neuroscience, [‡]Department of Computer Science, [¶]Department of Biological Sciences, and ¹Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States [§] Department of Computer Science, The College of New Jersey, Ewing, New Jersey 08628, United States

J. Chem. Inf. Model., **2017**, *57* (4), pp 942–957 **DOI:** 10.1021/acs.jcim.6b00740 Publication Date (Web): April 3, 2017 **Copyright © 2017 American Chemical Society**

Acknowledgements

Matt Ragoza

Elisa Idrobo

Josh Hochuli

Jocelyn Sunseri

Group Members

Jocelyn Sunseri Matt Ragoza Josh Hochuli Pulkit Mittal Alec Helbling Aaron Zheng Sharanya Bandla Faiha Khan Lily Turner

Department of Computational and Systems Biology

National Institute of General Medical Sciences R01GM108340

