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Drug Development
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R&D: Delivering Innovation32
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Overview of the R&D 
Process

For those who do not work directly in 
drug development, the difficulty of the 
process can be hard to grasp. Numbers 
can help give a sense of the gauntlet 
of challenges each candidate medicine 
must pass through, and those numbers 
are daunting:

 � On average, it takes about 10 to 
15 years for a new medicine to 
complete the journey from initial 
discovery to the marketplace.6,7,8

 � For every 5,000 to 10,000 compounds 
that enter the pipeline, only one 
receives approval. Even medicines 
that reach clinical trials have only a 
16% chance of being approved.9

 � The process is costly. The average 
R&D investment for each new 
medicine is $1.2 billion, including 
the cost of failures,10 with more 
recent studies estimating the costs 
to be even higher.11

Each potential new medicine goes 
through a long series of steps on its 
way to patients. Figure 11 outlines this 
process.

Drug Discovery

The first step in developing a new 
medicine is to understand the disease or 
condition as thoroughly as possible. The 
entire biomedical research community 
contributes to this body of knowledge. 
In the United States, we are fortunate 

to have a have a dynamic, collaborative 
research ecosystem that includes 
researchers from government, industry, 
and academia. 
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Figure 11: The Research and Development Process

http://phrma.org/sites/default/files/pdf/PhRMA%20Profile%202013.pdf
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1. Does the compound do what you want it to? 
2. Does the compound not do what you don’t 

want it to? 
3. Is what you want it to do the right thing?
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?
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Approaches
Ligand Based 

- similarity to known binder 

Receptor Based 
- dock and score 

Interaction Based 
- pharmacophore ?
Goal: Find something that binds (potency)
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Docking

Determine the conformation and pose of a 
ligand at a docking site 

6

Challenge is to find 
conformation and pose with 
the best score 
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Two Phase Docking

7

1. Global Pose Estimation 2. Local Refinement

Stochastic Minimization
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Search Algorithms
Systematic 

search (BFS, DFS, A*) 

Stochastic 
Monte Carlo 

Genetic/Evolutionary algorithms 

maintain a population of candidates  
mutation and crossover
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Monte Carlo

What is a neighbor? 

What is Ei? 

Since our goal is optimization, what else do we have to do?
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Local Optimization
Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

Approximation of Hessian
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Receptor Based: Scoring

van der Waals 
a = 12, b = 6 
Lennard-Jones potential 

Coulomb’s Law 
q: partial charges 
D: dielectrict constant

Dock 4.0

-.41
.205.205
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AutoDock Vina

r1 r2d
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Scoring

I dx.doi.org/10.1021/ci200269q |J. Chem. Inf. Model. XXXX, XXX, 000–000

Journal of Chemical Information and Modeling ARTICLE

above, low Med |Err| is more important in this type of scoring.
OVER complexes had errors (pKd/i

experiment ! pKd
score) less

than!1"Med |Err| in at least 7 of the 9 functions (78% of the
methods, a larger percentage than the 12 of 17 requirement for
the sets defined by linear regression). UNDER complexes were
determined by the errors greater than 1"Med |Err| forg7 of 9
methods. Again, structures were determined to be well scored if
their error was <1.1 pKd. This cutoff was maintained even if the
Med |Err| was less than 1.1. This lead to 36 OVER, 28 UNDER,
and 34 GOOD complexes based on Med |Err|. Unfortunately,
there is no way to estimate the statistical significance of the sets
determined in this manner, but the overwhelming majority of
complexes are also in the sets determined by linear regression.
The complexes are listed in the Supporting Information.
Comparison of the GOOD versus BAD Complexes. The

comparison of GOOD and BAD complexes below focuses only
on the sets determined through linear regression because of the
solid statistics outlined in the Introduction Section. We next
applied the concept of a null hypothesis to this portion of the
analysis and developed a null set of complexes (NULL) to
characterize a type of signal-to-noise metric. The first graph in

Figure 5 shows the distribution of affinities for the GOOD,
OVER, and UNDER sets. There is a large bias for OVER
complexes to have low affinities, UNDER complexes to have
high affinities, and GOOD complexes to lie in between. There-
fore, we defined the NULL cases based on affinities and
compared the characteristics of the signal to the inherent back-
ground. Within this framework, the signal is the comparison of
GOOD to OVER and UNDER complexes, and the NULL sets
simply compare complexes with midlevel affinity to weak binders
and tight binders, respectively. First, we divided the 332 com-
plexes into three subsets, using cutoffs ofe50 nM andg50 μM,
as shown in gray shading in Figure 5. We then removed any
UNDER complexes from the high-affinity subset, any GOOD
complexes from the midrange subset, and any OVER complexes
from the low-affinity subset. The NULL set contained 179
complexes: 65 high-, 69 mid-, 45 low-affinity complexes. We
would like to ensure that the differences in physical properties are
not simply a reflection of affinity. Obviously, those properties are
important in scoring and will be represented across the sets, but
the use of a NULL set helps us identify potential bias arising from
the definition of a difficult-to-score system.

Figure 4. Comparison of experimental and calculated values from the nine functions which predicted absolute binding affinity, listed roughly in order of
increasing Med |Err| and RMSE. Black lines represent perfect agreement. The red lines indicate +Med |Err| and !Med |Err| from the black line. The
blue circles denote complexes for whichg7 of the 9 methods have consistently underestimated the affinity by at least Med |Err|, while the red circles are
those where the affinity was overestimated.

Ideally, score would 
equal affinity – but 
this is an unsolved 
problem.

http://www.csardock.org/

R2 = 0.58 
RMSE = 1.51

http://www.csardock.org
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State of the Art

Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 11(5): 
e0155183. doi:10.1371/journal.pone.0155183

Pose Prediction Binding Discrimination Affinity Prediction
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Can we do better?
Accurate pose prediction, binding 
discrimination, and affinity prediction without 
sacrificing performance?  

Key Idea: Leverage “big data” 
231,655,275 bioactivities in PubChem 

125,526 structures in the PDB 

16,179 annotated complexes in PDBbind
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Machine Learning

Features Prediction
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Neural Networks

step sigmoid ReLU
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, a 
feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.
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Deep Learning
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Backpropagation



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Image Recognition

https://devblogs.nvidia.com

Convolutional Neural Networks
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Convolutional Neural Networks
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Convolution 
Feature Maps

Convolution 
Feature Maps

Fully Connected
Traditional NN
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CNNs for Protein-Ligand Scoring

CNN
Pose Prediction

Binding 
Discrimination

Affinity Prediction
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Protein-Ligand Representation

(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel
The only parameters for 
this representation are the 
choice of grid resolution, 
atom density, and atom 
types.
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Atom Density

Gaussian
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Atom Types
Ligand

AliphaticCarbonXSHydrophobe  
AliphaticCarbonXSNonHydrophobe  

AromaticCarbonXSHydrophobe  
AromaticCarbonXSNonHydrophobe  

Bromine  
Chlorine  
Fluorine  
Iodine  

Nitrogen  
NitrogenXSAcceptor  

NitrogenXSDonor  
NitrogenXSDonorAcceptor 

Oxygen  
OxygenXSAcceptor  

OxygenXSDonorAcceptor  
Phosphorus  

Sulfur  
SulfurAcceptor 

Receptor
AliphaticCarbonXSHydrophobe  

AliphaticCarbonXSNonHydrophobe  
AromaticCarbonXSHydrophobe  

AromaticCarbonXSNonHydrophobe  
Calcium  

Iron  
Magnesium  

Nitrogen  
NitrogenXSAcceptor  

NitrogenXSDonor  
NitrogenXSDonorAcceptor 

OxygenXSAcceptor  
OxygenXSDonorAcceptor  

Phosphorus  
Sulfur  
Zinc
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Training Data

Pose Prediction

337 protein-ligand complexes 
• curated for electron density 
• diverse targets 
• <10µM affinity 
• generate poses with Vina 

- 745  <2Å RMSD (actives) 
- 3251 >4Å RMSD (decoys) 

4056 protein-ligand complexes 
• diverse targets 
• wide range of affinities 
• generate poses with AutoDock Vina 
• include minimized crystal pose 

- 8,688  <2Å RMSD (actives) 
- 76,743 >4Å RMSD (decoys) 



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Training Data

Binding Discrimination

102 targets 
• 22,645 actives 
• 1,407,145 decoys 
• <10µM affinity 
• true poses unknown
• trust docked poses 

• 8,688 low RMSD poses 
• assign known affinity 
• regression problem 

Affinity Prediction
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Model Evaluation
CSAR: >90% similar 
targets kept in same fold 

DUD-E & PDBbind: 
>80% similar targets kept 
in same fold

AUC
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Model Training

Parallelize	over	atoms	to	obtain	a	mask	of	atoms	that	overlap	each	grid	region	
Use	exclusive	scan	to	obtain	a	list	of	atom	indices	from	the	mask	
Parallelize	over	grid	points,	using	reduced	atom	list	to	avoid	O(Natoms)	check	

Custom MolGridDataLayer
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Data Augmentation
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Model Optimization

Atom Types 
• Vina (34) 
• element-only 

(18) 
• ligand-

protein (2) 
Atom Density Type 

• Boolean 
• Gaussian 

Radius Multiple 
Resolution 

Pooling 
Depth 
Width 
Fully Connected 
Layers  

unit1_pool 

unit1_conv1 

32 x 24^3

loss 

unit2_pool 

unit2_conv1 

64 x 12^3

label

unit3_pool 

output_fc 

2

output 

unit3_conv1 

128 x 6^3

data 

48^3
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Visualization

masking gradients layer-wise relevance
1UGX
Score: 0.62
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Pose Sensitivity

3COY 2QMJ 3OZT

Partially Aligned Poses 
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Pose Prediction (CSAR)

inter-target ranking intra-target ranking
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Pose Prediction (PDBbind)

inter-target ranking intra-target ranking
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Binding Determination

102 targets 
• 22,645 actives 
• 1,407,145 decoys 
• <10µM affinity 
• true poses unknown
• use docked poses 
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Affinity Prediction

unit1_pool 

unit1_conv1 

32 x 24^3

loss 

unit2_pool 

unit2_conv1 

64 x 12^3

label

unit3_pool 

output_fc 

2

output 

unit3_conv1 

128 x 6^3

data 

48^3

output_af

affinity
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Beyond Scoring

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams
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Beyond Scoring

2Q89

More Oxygen Here

Less Oxygen Here
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Minimizing Low RMSD Poses

better worse
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3AO4
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Iterative Refinement
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3AO4
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Related Work
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