P oy
5 m *
l.

\

_ "I LU niversitvy of Pittsbu reh Department of Computational & Systems Biology

Computational Drug Discovery

David Ryan Koes
4/9/2019

[
http://bits.csb.pitt. edu,6

7/



University of Pittsburgh Computational and Systems Biology

What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance
recognized in an official pharmacopoeia or formulary (2) : a
substance intended for use in the diagnosis, cure, mitigation,
treatment, or prevention of disease (3) : a substance other than
food intended to affect the structure or function of the body
(4) : a substance intended for use as a component of a medicine
but not a device or a component, part, or accessory of a device

http://www.merriam-webster.com/dictionary/drug
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What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance
recognized in an official pharmacopoeia or formulary (2) : a
substance intended for use in the diagnosis, cure, mitigation,
treatment, or prevention of disease (3) : a substance other than
food intended to affect the structure or function of the body
(4) : a substance intended for use as a component of a medicine
but not a device or a component, part, or accessory of a device

http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the
structure/function of macromolecules
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THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

BASIC ’ DRUG PRE- FDA ROSTAGRROVAL

. CLINICAL TRIALS RESEARCH &
ESEARCH| DISCOVERY CLINICAL REVIEW MONITORING

PHASE | PHASE Il PHASE III PHASE IV

1 FDA-
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MEDICINE

POTENTIAL NEW MEDICINES
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Source: Pharmaceutical Research and Manufacturers of America (http:/phrma.org)
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THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

BASIC DRUG PRE- POST-APPROVAL
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Drug Discovery
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Drug Discovery

High Throughput Screening

Computational and Systems Biology
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Drug Discovery

High Throughput Screening

Computational and Systems Biology
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The State of Drug Development

New Drugs Approved

New Drug Applications

3l

-
Vi LY A
e -4 he—— i A 30
——“L¥.'____’.-_= ?‘— = _‘_1_;.—. =
T — 20
10
0
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

g S T, W N S N W Y
Fd fﬁﬁﬁﬁﬁ A é?ﬁﬁfFFfﬁ'?'f“

http://www.fda.gov/downloads/AboutFDA/Transparency/Basics/UCM247465.pdf
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Computational Drug Discovery

Virtual Screening
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Computational Drug Discovery

Virtual Screening
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Computational Drug Discovery

Virtual Screening
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder

- QSAR

- pharmacophore
Receptor Based

- dock and score

- simulation

MM/GBSA, MM/PBSA, thermodynamic integration, free energy
perturbation, Jarzynski, umbrella sampling, Monte Carlo, weighted
ensemble, metadynamics...
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder

- QSAR

- pharmacophore
Receptor Based

- dock and score

- simulation

MM/GBSA, MM/PBSA, thermodynamic integration, free energy
perturbation, Jarzynski, umbrella sampling, Monte Carlo, weighted

ensemble, metadynamics... N

Not going to cover today A
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ADMET

Absorption
Distribution
Metabolism
Excretion
Toxicity

Computational and Systems Biology

Will this be a usable drug?

Screening for ADMET:
Cytochrome P450 interaction
Lipinksi’s Rule of Five

QSPR: Quantitative Structure
Property Relationship



University of Pittsburgh Computational and Systems Biology

Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder
- QSAR

- pharmacophore

Receptor Based
- dock and score
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Ligand Based: Similarity

Fingerprint Methods
- map molecules to a descriptor space:

1D: molecule weight, #h-bonds, etc.
2D: paths, bond distances between atom-pairs

- similarity is “distance” between descriptors
- for bit vectors, Tanimoto distance used

A(B
AUB

T(A,B) =

11
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Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

O=C-N-C O=N-O
\ O=C-0, \ | _N-c-c-c-c-c=0
fingerprint: |

Ct}=C-C
\\/O//
I =

12
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Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

O=C-N-C

O=N-O
0=C-O _
\ | _ncccceceo

o T

. fingerprint: NN

fﬁi ceec
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Topological Fingerprints
ECFP4

- all substructures with diameter 4 around every atom

13
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships

e NN
I T, LD f(f)
f(f) — w1Z1 + woxy + w3x3z + ... + b
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Ligand Based: Similarity
Superposition Methods

- compute “overlap” between molecules

- consider shape, electrostatics, pharmacophores

http://www.cresset-group.com/
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Representing Compounds

Conformations

A single compound has many different shapes

o
® T~ fC
r oo 0l g

Choices: Store sampling of explicit conformations, search for
a good conformation, ignore conformations (2D only)

16



University of Pittsburgh Computational and Systems Biology

Ligand Based: Pharmacophore

Pharmacophore:

IUPAC: The ensemble of steric and electronic features that is
necessary to ensure the optimal supra-molecular
interactions with a specific biological target structure and to
trigger (or to block) its biological response.

Common Features:
aromatic ring
hydrophobic area
positive ionizable
negative ionizable
hydrogen bond donor
hydrogen bond acceptor
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Charge-Charge
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Charge-Charge

Salt Bridge
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Hydrogen Bond

20
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Hydrogen Bond
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Hydrogen Bond
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Hydrogen Bond
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University of Pittsburgh
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Hydrogen Bond

-
JA.pdb

A

Computational and Systems Biology

Distance:

D-A: 2.5A — 3.5A (4.0A?)
H-A: 1.5A — 2.5A

Angle:

Depends on context
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Hydrophobic

24
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Hydrophobic
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Aromatic

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch11/benzene-mo.jpg 26
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Aromatic
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Aromatic

Rings offset
Interplanar distance: 3.3-3.8A
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Pharmacophore Features

7 LYeYRYey?
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m Efficient and Exact Pharmacophore Search

Hydrogen
Dlejpie)r
Eediure

Hydrophobic

Foam o Pharmacophore

A spatial arrangement of molecular
features essential for biological activity

Koes, D. R., & Camacho, C. J. (2011). Pharmer: efficient and exact pharmacophore search.

Journal of Chemical Information and Modeling, 51(6), 1307-1314. doi:10.1021/ci200097m

Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: pharmacophore search of the ZINC database.

Nucleic acids research, 40(Web Server issue), W409-414. doi:10.1093/nar/gks378 79
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m Efficient and Exact Pharmacophore Search

Hydrogen
Dlelpke)r
Beatlie

Hydrophobic
Features

Hydrogen
Acceptor
Feature
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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@ Efficient and Exact Pharmacophore Search
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Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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m Efficient and Exact Pharmacophore Search
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder
- QSAR

- pharmacophore

Receptor Based
- dock and score

37
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Pharmacophores Aren’t Enough

. . .
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Pharmacophores Aren’t Enough

. .
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Docking

Determine the conformation and pose of a
ligand at a docking site

Challenge is to find
conformation and pose with
the best score

Computational and Systems Biology

39
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Two Phase Docking

1. Global Pose Estimation 2. Local Refinement

Stochastic Minimization

40
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Two Phase Docking

1. Global Pose Estimation

X
“
.

Stochastic Minimization
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Scoring Goals
Affinity Prediction
-how well does it bind?

Inactive/Active Discrimination
-does it bind?

Pose Prediction

-how does it bind?

41
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Scoring Goals
Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination
-does it bind?

Pose Prediction

-how does it bind?

Speed

41



University of Pittsburgh Computational and Systems Biology

Scoring Goals
Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination
-does it bind?

Pose Prediction

-how does it bind?

Approximations:
SpEEd Rigid or semi-rigid receptor
Implicit water model

41



University of Pittsburgh Computational and Systems Biology

Scoring Types
Force-field based

inter- and intra- molecular forces
van der Waals, electrostatic, torsional

Empirical
parameterized function is fit to binding energy data

Knowledge based

scoring function based on known structure, not
physical principles

Consensus

42
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Force

Protein—ligand

Internal ligand

Field
Scoring

G-Score Ew+Ey oo = E . +E =
C. D, 1
ZZ E, +E,)-(E, +E ,)]} i _ i n
8 4 ww dw T Loy ———— |+ > —V|1+—cos|nlw

-2 g o) 2| e
D-score EvdW + Eelectrovtalic =

DN =5 +—= |+332. 0—(7

prot lig l:(dlz di; J
GOId E vdW + E electrostatic EvdW + Eelectrastatic =

4, B, 9.4,
#3320 Z[ o }+3320 '
> it
+optional £, , .
AUtODOCk EvdW + EH—bond +Eelectrostatic = EvdW + EH—bond + Eelectrostatic =
i A. B, C. D.
-7 E(l‘)x R A _y __¥ + E(t _y __ Y +
zz{[d i e Zﬂd A
9.9, ]
332.0—— :| 332.0 4.4;
€(d,)d, Ady)d,

E(#) = angular weight factor E(t) = angular weight factor
DOCK EvdW + Eelectrostatic =
(v4.0)

£y [4e]

prot lig

+332.0_
dl]
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Computational and Systems Biology

Dock 4.0

Coulomb’s Law
g: partial charges
D: dielectrict constant

B 9,9,

’+332

: : r?. r ' D Fi If)
I=1)= ] ]
van der Waals
O a=12,b=06
! .
sof | | Lennard-Jones potential
|
0} l‘-. g
: Rl i‘ﬂ Empirical ) 05
\ Lennard-Jones - L
100 } L ‘ . ‘ ‘
3.0 40 50 6.0 7.0 80
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Empirical Scoring

Functional form
LUDI AGbind = A(;H—bond Z f(AR? Aa) + A(;ionic Z f(AR’ Aa) +
H-bond ionic
AC‘;hyclrophobic Z Ahydrophobzc + AC;rotor N rotor AC;O
hydrophobic
hydrophobic = Molecularsurface area
F-Score AGbina’ = AC;H—bond Z f(AR? Aa) + AC;iom'c Z f(AR9 Aa) + AGaromatic Z f(AR7 Aa)
H-bond ionic aromatic
contact Z f(AR Aa + AGrotor Nrotor + A(;O
contact
Chem- A(;binaf = A(;H—bona’ Zf(AR? Aa) + AG metal Zf(AR Aa)
Score H-bond metal
Ilpo Zf ) + A(;rotor Zf ( nl ’ ) + A(;O
lipo rotor

45
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Empirical Scoring

Functional form
LUDI AG,,, =BG . (AR, Ac)+ MG /(AR Acr) +
H-bond ionic "
regression
A : N — + -
-hydréobichydmphomc - i - CoefﬂClent
A hydrophobic = molecular surface area
FScore | AG,.. - 3. /1A% Ac) [5G 2 /16%.Ac) SN 3/ (. Ac)
H-bond ionic aromatic
AR9A Nro or
+ G >_ /(AR Ac)[EERRN ... + G
Chem- bmd Zf AR Aa f(AR9 Aa)+
Score —bond metal
-lZf NGy /e, )+ NEl
ipo rotor

45



University of Pittsburgh

Computational and Systems Biology

AutoDock Vina

Weight Term
- . ,~(d/0.5)? -0.0356 gauss
ga‘uhsl (d) ' w Ry, c ' -0.00516 g‘.ill\\;
() 12 0.840 Repulsion
gauﬁsvz(d) — u’nun&hl.’ (d=3)/2) —0.0351 Hydrophobic
“ d’ d O ~0.587 Hydrogen bonding
) M ¢ < 0.0585 Nrot
repulsion(d) = { I P“O’““ 4> 0
o1
08 |
Whydrophobic d <05 s
hydrophobic(d) = 0 d> 1.5 | e \/
) > vV ! \
Whydropbobic( 1.9 — d)  otherwise -
g
a1 ) BOFC  e—
B » Pproghotac
e . S« Moo
Whbond d < 0.7 02 |
Whbona(— 5 d) otherwise Swte Gutwes (4
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Knowledge Based

Functional form

PMF Parametrized pairwise potential PMF score :

PME = ZZ:A’J (dif ) Aij (dij ) = —k,T ln|:f1/](;lcorr (r) IOS% (r)}

prot lig bulk

where k 1s the Boltzmann constant, fV’(;,_corr (r) is a ligand volume correction factor

vor
and 'OSLH indicates a radial distribution function for a protein atom i and a ligand atom ;.

i
Pk

DrugS
PUBSEOTE | A - y S AW, (r)+(1- y)x{z AW, (SAS,SA4S,)+ > AW (SAS, SAS, )}
(V1.2) prot lig lig prot

SAS = Solvent accessible surface area terms, W;; = distance dependent pairwise potential

SMoG 0 (i, jmore than 5 A) D
G=gA: A =1 . gy =-kTlog = |;
l,zg’f g j {1 (i, jwithin 5 A) i 5

p; an p are interatomic and averaged interactomic interactions

47
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RF-Score

Pairwise Distance Counts (<12A) Protein

C N ) S

ORIGINAL PAPER "0 2000l '

Structural bioinformatics Acvance Acowss putlcaticr Mach 17, 2010 R d F t
A machine learning approach to predicting protein-ligand binding a n o m o res

affinity with applications to molecular docking
Pecro J. Ballester’-*-1 and John B. O. Maachel®*
" Unviever Centro for Molecuir Scenco Informatcs, Department of Cremistry, Unversty of Camnioge. Lensfeid

Roao, Cambriage CB2 'EW and “Centre for Bomoleouir Scences, Unversty of St Andrews, North Maugh
Ancrows KY 16 G687, UK
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R= 0.776 on independent test set ( 195 complexes)

Department of Computational Biology

| 0. 039026 00
- - ’ 4 -~
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o .08
%88, e8F o ©
A i
-I:’_.. o f =
$ 9 B P s o
NS
Y. & wm e
5§80 DB o
&5
A o
|
4 ; e 10 . 4
Measured binding affinity (PDBbind DB)

RMSE = 1.58

Scoring function R Rs RMSE
RF-Score 0.776 0.762 1.58
X-Score::HMScore 0.644 0.705 1.83
DrugScorecsb 0.569 0.627 1.96
SYBYL::ChemScore 0.555 0.585 1.98
DS::PLP1 0.545 0.588 2
GOLD::ASP 0.534 0.577 2.02
SYBYL::G-Score 0.492 0.536 2.08
DS::LUDI3 0.487 0.478 2.09
DS::LigScore2 0.464 0.507 2.12
GlideScore-XP 0.457 0.435 2.14
DS::PMF 0.445 0.448 2.14
GOLD::ChemScore 0.441 0.452 2.15
SYBYL::D-Score 0.392 0.447 2.19
DS::Jain 0.316 0.346 2.24
GOLD::GoldScore 0.295 0.322 2.29
SYBYL::PMF-Score 0.268 0.273 2.29
SYBYL::F-Score 0.216 0.243 2.35
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J. Chem. Inf. Model. 2010, 50, 1961-1969 1961

Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from
. Diverse Protein Data Sets
R= 0.776 on independent test set ( 195 complexes)

Chnistian Kramer* and Peter Gedeck

Novartis Institutes for BioMedical Rescarch, Novartis Pharma AG, Forum |, Novartis Campus,
_ CH-4056 Basel, Switzerland
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Vieasured binding affinity (PDBbind DB)

RMSE = 1.58 R = 0.46; RMSE = 1.6 .
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Code 3 Code 16

Scoring

Ideally, score would *
equal affinity — but
this 1s an unsolved

problem.

od (cakulatod)

http://www.csardock.oré/

50
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Scoring Code 16

Ideally, score would
equal affinity — but
this 1s an unsolved
problem.

R2=0.28
RMSE =1.9
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Scoring

—

Ideally, score would
equal affinity — but
this 1s an unsolved
problem.

pKd

R2=0.58
RMSE = 1.51
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: Code 1
Scoring

Ideally, score would
equal affinity — but
this 1s an unsolved
problem.

R2=0.58
RMSE = 1.51

pKd (calculated)
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Scoring State of the Art

Vina
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.Top 1 Top 3-Top 5
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Vina Vinardo Experimental binding affinity (pKd)
Pose Prediction Binding Discrimination Affinity Prediction

Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 11(5):
€0155183. doi:10.1371/journal.pone.0155183
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Can we do better?

Accurate pose prediction, binding
discrimination, and affinity prediction without
sacriticing performance?
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Can we do better?

Accurate pose prediction, binding
discrimination, and affinity prediction without
sacriticing performance?

Key Idea: Leverage "big data”
231,655,275 bioactivities in PubCher

125,526 structures in the PDB

16,179 annotated complexes in PDBbina
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Machine Learning

Features X — — y Prediction
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Neural Networks
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Neural Networks

Hidden

[nput

)
.

The universal approximation theorem
states that, under reasonable assumptions, a
feedforward neural network with a finite
number of nodes can approximate any
continuous function to within a given error
over a bounded input domain.



University of Pittsburgh

Deep Learning

‘ 'l' 9'7 B \‘v’;l'm
AT AT A
S
P

ONL

) 'Vv/ N/ AV V
o

YY)
i"u‘.r

0%
!

R )

\
e

¥o%eS 4
;4‘:‘\ X

A\l

A
D& XD

KO KOO XK
\ A 5/ \\‘\ A ;‘/ \\‘\ / )‘

NS TR

SO el

BN 9 9

%

OGN
O

o
Wl RNy w'il//l‘\‘ ‘l’/l\‘ 4,
'S0 0 0. 070
Y O, AN, A _

~( B f,v‘»:o:.gg.:sg':ox.gﬁgs;/ S

NV VWY VYVINY Y

T S 0 S b o
W NS4

eO

©)
[ ]

0

Computational and Systems Biology

)+ AlphaGo

.
SRR Tr—
"‘. —

b

A4
ary

'{A (A}W ) Gammll o

Aﬁ’SYSTEMé}O



University of Pittsburgh

Computational and Systems Biology

Deep Learning
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Image Recognition

airplane ﬁ..% » -..=ﬂa
automobile E-'E;- ILSVRC top-5 error on ImageNet
e Emall WEE

My

cat ol Rl e
— ——— 5 :
deer l.ﬂ‘& " Convolutional Neural Networks

5

w0  EESH®0
ro i I I N
orse il N £ 1 V9 I
o B

L . ﬁ https://devblogs.nvidia.com
vk o R 4 10 5 o L R

.

20140 20M 2012 FablE 2004 Human  Arkiy 2015




University of Pittsburgh Computational and Systems Biology

Convolutional Neural Networks
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CNNs for Protein-Ligand Scoring

Pose Prediction

Binding
Discrimination

Affinity Prediction
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Protein-Ligand Representation

(R,G,B) pixel
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Protein-Ligand Representation

(R,G,B) pixel —
(Carbon, Nitrogen, Oxygen,...) voxe

The only parameters for
this representation are the
choice of grid resolution,
atom density, and atom

types.
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Pose Results
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Pose Results
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Affinity Results

HiRes Affinity Default 2018 Vina
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Affinity Results
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Beyond Scoring
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Beyond Scoring

unit3 convl output_fc
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Beyond Scoring
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Beyond Scoring
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Deep Dreams of Molecules
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Deep Dreams of Molecules
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Beyond Scoring
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Beyond Scoring

“ _ff‘f% Oxyg%n Here

oL
0A
















University of Pittsburgh

Computational and Systems Biology

Minimizing Low RMSD Poses
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Iterative Refinement
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RMSD Change
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Iterative Refinement
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Iterative Refinement
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