

David Ryan Koes 4/9/2019

http://bits.csb.pitt.edu

What is a drug?

According to the Food, Drug, and Cosmetic Act (1): a substance recognized in an official pharmacopoeia or formulary (2): a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3): a **substance** other than food **intended to affect the structure or function** of the body (4): a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device http://www.merriam-webster.com/dictionary/drug

What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance recognized in an official pharmacopoeia or formulary (2) : a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3) : a substance other than food **intended to affect the structure or function** of the body (4) : a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the structure/function of macromolecules

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

Drug Discovery

Drug Discovery

High Throughput Screening

Drug Discovery

High Throughput Screening

The State of Drug Development

http://www.fda.gov/downloads/AboutFDA/Transparency/Basics/UCM247465.pdf

Virtual Screening

existing libraries

Virtual Screening

Virtual Screening

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score
- simulation

MM/GBSA, MM/PBSA, thermodynamic integration, free energy perturbation, Jarzynski, umbrella sampling, Monte Carlo, weighted ensemble, metadynamics...

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score
- simulation

MM/GBSA, MM/PBSA, thermodynamic integration, free energy perturbation, Jarzynski, umbrella sampling, Monte Carlo, weighted ensemble, metadynamics...

ADMET

Absorption Distribution Metabolism Excretion Toxicity

Will this be a usable drug?

Screening for ADMET:

Cytochrome P450 interaction Lipinksi's Rule of Five QSPR: Quantitative Structure Property Relationship

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore
- **Receptor Based**
 - dock and score

Ligand Based: Similarity

Fingerprint Methods

- map molecules to a descriptor space:

1D: molecule weight, #h-bonds, etc.2D: paths, bond distances between atom-pairs

- similarity is "distance" between descriptors
- for bit vectors, Tanimoto distance used

$$T(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Topological Fingerprints

ECFP4

- all substructures with diameter 4 around every atom

Ligand Based: Similarity

Superposition Methods

- compute "overlap" between molecules
- consider shape, electrostatics, **pharmacophores**

Representing Compounds

Conformations

A single compound has many different shapes

Choices: Store sampling of explicit conformations, search for a good conformation, ignore conformations (2D only)

Ligand Based: Pharmacophore

Pharmacophore:

IUPAC: The ensemble of steric and electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

Common Features:

aromatic ring hydrophobic area positive ionizable negative ionizable hydrogen bond donor hydrogen bond acceptor

Charge-Charge

Charge-Charge

Distance: D-A: 2.5Å – 3.5Å (4.0Å?) H-A: 1.5Å – 2.5Å **Angle:** Depends on context

Hydrophobic

Hydrophobic

Hydrophobic

Hydrophobic

Aromatic

Aromatic

Aromatic

Rings offset Interplanar distance: 3.3-3.8Å

Pharmacophore Features

Efficient and Exact Pharmacophore Search

Pharmacophore

A spatial arrangement of molecular features essential for biological activity

Koes, D. R., & Camacho, C. J. (2011). Pharmer: efficient and exact pharmacophore search. *Journal of Chemical Information and Modeling, 51*(6), 1307-1314. doi:10.1021/ci200097m Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: pharmacophore search of the ZINC database. *Nucleic acids research, 40*(Web Server issue), W409-414. doi:10.1093/nar/gks378

University of Pittsburgh

Pharmer

University of Pittsburgh

Pharmer

University of Pittsburgh

Pharmer

University of Pittsburgh

Pharmer

• < > 💷	pharmit.coll.pitt.edu/search.html	8	đ	0	E
Stavb Publish		> Pharmacoph	ore Resul	its	
Preson Paragram		Hame	RMSD .	Mass	i a
armacophore Search -> Shape P		PubChem-13960682	0.223	392	
ad Receptor Load Featur		PubChem-23673360	0.223	391	
rmacophore		PubChem-13960682	0.223	392	
Aromatic		PubChem-23673360	0.223	391	
(HE.16.20.06, L88) Radius 1.1		PubChem-13960684	0.243	388	
HydrogenAcceptor		PubCherr-13960684	0.243	388	
HydrosenAccestor		PubChem-13960684	0.243	388	
(10.17.40.46, 4.38) Radias 9.5		PubChem-13960684	0.250	388	
NegativeIon		PubChem-59810304	0.311	481	
Hadranhabir		PubChem-10000399	0.325	389	
0 (0.4,41,87, 0.91) Radius 1.8		PubChem-10000399	0.327	389	
Hydrophobic		PubChem-59081061	0.349	875	
C. Hadaahahis		PubChem-10250942	0.379	387	
(HL24, HL84, -1.80) Radue L.B		PubChem-23686481	0.379	386	
Hydrophobic		PubChem-13960681	0.442	385	
Contraction of the second seco		PubChem-13960681	0.442	385	
(St.41,43,31,-5,25) Redue 1.0		PubChem-13960681	0.444	385	
Hydrophobic		PubChem-88181354	0.449	698	
[NE.4,37,87,-1.96] Radius 1.0		PubChem-842716	0.462	319	
			/	-	_
OFF Aromatic		Stown	g 1 to 19 at	f 38 hits	

http://pharmit.csb.pitt.edu

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

dock and score

Pharmacophores Aren't Enough

Pharmacophores Aren't Enough

.2µM

50µM

n.i.

Docking

Determine the **conformation** and **pose** of a ligand at a docking site

Challenge is to find conformation and pose with the best **score**

Two Phase Docking

1. Global Pose Estimation

2. Local Refinement

Two Phase Docking

1. Global Pose Estimation

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Speed
Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Speed

Approximations:

Rigid or semi-rigid receptor Implicit water model

Scoring Types

Force-field based

inter- and intra- molecular forces van der Waals, electrostatic, torsional

Empirical

parameterized function is fit to binding energy data

Knowledge based

scoring function based on known structure, not physical principles

Consensus

Force Field Scoring

	Protein-ligand	Internal ligand
G-Score	$E_{vdW} + E_{H-bond} =$ $\sum_{prot} \sum_{lig} \left[\left(\frac{A_{ij}}{d_{ij}^8} - \frac{B_{ij}}{d_{ij}^4} \right) + \left(E_{da} + E_{ww} \right) - \left(E_{dw} + E_{aw} \right) \right]$	$E_{vdw} + E_{torsion} = \sum_{lig} \left(\frac{C_{ij}}{d_{ij}^{12}} - \frac{D_{ij}}{d_{ij}^6} \right) + \sum_{lig} \frac{1}{2} V \left[1 + \frac{n}{ n } \cos(n \omega) \right]$
D-Score	$E_{vdW} + E_{electrostatic} = \sum_{prot} \sum_{lig} \left[\left(\frac{A_{ij}}{d_{ij}^{12}} + \frac{B_{ij}}{d_{ij}^{6}} \right) + 332.0 \frac{q_i q_j}{\in (d_{ij}) d_{ij}} \right]$	
Gold	$E_{vdW} + E_{electrostatic} = \sum_{prot} \sum_{lig} \left[\left(\frac{A_{ij}}{d_{ij}^{a}} + \frac{B_{ij}}{d_{ij}^{b}} \right) + 332.0 \frac{q_{i}q_{j}}{\in (d_{ij})d_{ij}} \right]$	$E_{vdW} + E_{electrostatic} = \sum_{lig} \left[\left(\frac{A_{ij}}{d_{ij}^{a}} + \frac{B_{ij}}{d_{ij}^{b}} \right) + 332.0 \frac{q_{i}q_{j}}{\in (d_{ij})d_{ij}} \right] + \text{optional } E_{H-bond}$
AutoDock	$E_{vdW} + E_{H-bond} + E_{electrostatic} =$ $\sum_{prot} \sum_{lig} \left[\left(\frac{A_{ij}}{d_{ij}^{12}} - \frac{B_{ij}}{d_{ij}^{6}} \right) + E(t) \times \left(\frac{C_{ij}}{d_{ij}^{12}} - \frac{D_{ij}}{d_{ij}^{10}} \right) + 332.0 \frac{q_i q_j}{\in (d_{ij}) d_{ij}} \right]$ $E(t) = \text{angular weight factor}$	$E_{vdW} + E_{H-bond} + E_{electrostatic} =$ $\sum_{lig} \left[\left(\frac{A_{ij}}{d_{ij}^{12}} - \frac{B_{ij}}{d_{ij}^{6}} \right) + E(t) \left(\frac{C_{ij}}{d_{ij}^{12}} - \frac{D_{ij}}{d_{ij}^{10}} \right) + 332.0 \frac{q_i q_j}{4(d_{ij})d_{ij}} \right]$ $E(t) = \text{angular weight factor}$
DOCK (v4.0)	$E_{vdW} + E_{electrostatic} = \sum_{prot} \sum_{lig} \left[\left(\frac{A_{ij}}{d_{ij}^{a}} + \frac{B_{ij}}{d_{ij}^{b}} \right) + 332.0 \frac{q_{i}q_{j}}{\in (d_{ij})d_{ij}} \right]$	

Dock 4.0

Coulomb's Law q: partial charges D: dielectrict constant

Empirical Scoring

	Functional form
LUDI	$\Delta G_{bind} = \Delta G_{H-bond} \sum_{H-bond} f(\Delta R, \Delta \alpha) + \Delta G_{ionic} \sum_{ionic} f(\Delta R, \Delta \alpha) + \Delta G_{ionic} \sum$
	$\Delta G_{hydrophobic} \sum_{hydrophobic} \left A_{hydrophobic} \right + \Delta G_{rotor} N_{rotor} + \Delta G_0$
	$A_{hydrophobic}$ = molecular surface area
F-Score	$\Delta G_{bind} = \Delta G_{H-bond} \sum_{H-bond} f(\Delta R, \Delta \alpha) + \Delta G_{ionic} \sum_{ionic} f(\Delta R, \Delta \alpha) + \Delta G_{aromatic} \sum_{aromatic} f(\Delta R, \Delta \alpha)$
	+ $\Delta G_{contact} \sum_{contact} f(\Delta R, \Delta \alpha) + \Delta G_{rotor} N_{rotor} + \Delta G_0$
Chem-	$\Delta G_{bind} = \Delta G_{H-bond} \sum f(\Delta R, \Delta \alpha) + \Delta G_{metal} \sum f(\Delta R, \Delta \alpha) +$
Score	$\Delta G_{lipo} \sum_{lipo} f(\Delta R) + \Delta G_{rotor} \sum_{rotor} f(P_{nl}, P'_{nl}) + \Delta G_0$

Empirical Scoring

	Functional form
LUDI	$\Delta G_{bind} = \Delta G_{H-bond} \sum_{H-bond} f(\Delta R, \Delta \alpha) + \Delta G_{ionic} \sum_{ionic} f(\Delta R, \Delta \alpha) + \frac{\Delta G_{hydrophobic}}{\Delta G_{hydrophobic}} \sum_{hydrophobic} A_{hydrophobic} + \Delta G_{rotor} N_{rotor} + \Delta G_{0}$ $\frac{\Delta G_{hydrophobic}}{\Delta G_{hydrophobic}} \sum_{hydrophobic} A_{hydrophobic} + \Delta G_{rotor} N_{rotor} + \Delta G_{0}$ $\frac{\Delta G_{hydrophobic}}{\Delta G_{hydrophobic}} \sum_{hydrophobic} A_{hydrophobic} + \Delta G_{rotor} N_{rotor} + \Delta G_{0}$
	$A_{hydrophobic}$ = molecular surface area
F-Score	$\Delta G_{bind} = \Delta G_{H-bond} \sum_{H-bond} f(\Delta R, \Delta \alpha) + \Delta G_{ionic} \sum_{ionic} f(\Delta R, \Delta \alpha) + \Delta G_{aromatic} \sum_{aromatic} f(\Delta R, \Delta \alpha)$
	+ $\Delta G_{contact}$ $\sum_{contact} f(\Delta R, \Delta \alpha) + \Delta G_{rotor} N_{rotor} + \Delta G_0$
Chem- Score	$\Delta G_{bind} = \Delta G_{H-bond} \sum_{H-bond} f(\Delta R, \Delta \alpha) + \Delta G_{metal} \sum_{metal} f(\Delta R, \Delta \alpha) + \Delta G_{metal} \sum$
	$\Delta G_{lipo} \sum_{lipo} f(\Delta R) + \Delta G_{rotor} \sum_{rotor} f(P_{nl}, P_{nl}) + \Delta G_{0}$

AutoDock Vina

$$\frac{1}{2}$$

$$gauss_1(d) = w_{guass_1}e^{-(d/0.5)^2}$$

$$gauss_2(d) = w_{guass_2}e^{-((d-3)/2)^2}$$

$$repulsion(d) = \begin{cases} w_{repulsion}d^2 & d < 0 \\ 0 & d \ge 0 \end{cases}$$

$$hydrophobic(d) = \begin{cases} w_{hydrophobic} & d < 0.5 \\ 0 & d \ge 0 \end{cases}$$

$$hydrophobic(d) = \begin{cases} w_{hydrophobic} & d < 0.5 \\ w_{hydrophobic}(1.5 - d) & otherwise \end{cases}$$

$$hbond(d) = \begin{cases} w_{hbond} & d < -0.7 \\ 0 & d \ge 0 \\ w_{hbond}(-\frac{10}{7}d) & otherwise \end{cases}$$

Weight	Term	
-0.0356	gauss ₁	
-0.00516	gauss ₂	
0.840	Repulsion	
-0.0351	Hydrophobic	
-0.587	Hydrogen bonding	
0.0585	N _{rot}	

Knowledge Based

	Functional form
PMF	Parametrized pairwise potential PMF score :
	$PMF = \sum_{prot} \sum_{lig} A_{ij} (d_{ij}) A_{ij} (d_{ij}) = -k_B T \ln \left[f_{Vol_corr}^{j} (r) \frac{\rho_{seg}^{ij} (r)}{\rho_{bulk}^{ij}} \right]$
	where k_B is the Boltzmann constant, $f_{Vol_corr}^{j}(r)$ is a ligand volume correction factor
	and $\frac{\rho_{seg}^{ij}(r)}{\rho_{bulk}^{ij}}$ indicates a radial distribution function for a protein atom <i>i</i> and a ligand atom <i>j</i> .
DrugScore	$\Delta W = \gamma \sum \Delta W_{ij}(r) + (1 - \gamma) \times \left[\sum \Delta W_i(SAS, SAS_0) + \sum \Delta W_j(SAS, SAS_0) \right]$
(v1.2)	prot lig
	$SAS =$ Solvent accessible surface area terms, $W_{ij} =$ distance dependent pairwise potential
SMoG	$G = \sum_{ij} g_{ij} \Delta_{ij}; \qquad \Delta_{ij} = \begin{cases} 0 & (i, j \text{ more than 5 Å}) \\ 1 & (i, j \text{ within 5 Å}) \end{cases}; \qquad g_{ij} = -kT \log \left[\frac{p_{ij}}{\overline{p}}\right];$
	p_{ij} an \overline{p} are interatomic and averaged interactomic interactions

RF-Score

Pairwise Distance Counts (<12Å)

ORIGINAL PAPER

Vol. 26 no. 9 2010, pages 1169-1175 doi: 10.1093/bioinformatics/btg112

Structural bioinformatics

Advance Access publication March 17, 2010 A machine learning approach to predicting protein-ligand binding

affinity with applications to molecular docking

Pedro J. Ballester^{1,*,†} and John B. O. Mitchell^{2,*}

¹Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW and ²Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK Associate Editor: Burkhard Rost

Protein

48

RF-Score Output

Scoring function	R	Rs	RMSE
RF-Score	0.776	0.762	1.58
X-Score::HMScore	0.644	0.705	1.83
DrugScore ^{CSD}	0.569	0.627	1.96
SYBYL::ChemScore	0.555	0.585	1.98
DS::PLP1	0.545	0.588	2
GOLD::ASP	0.534	0.577	2.02
SYBYL::G-Score	0.492	0.536	2.08
DS::LUDI3	0.487	0.478	2.09
DS::LigScore2	0.464	0.507	2.12
GlideScore-XP	0.457	0.435	2.14
DS::PMF	0.445	0.448	2.14
GOLD::ChemScore	0.441	0.452	2.15
SYBYL::D-Score	0.392	0.447	2.19
DS::Jain	0.316	0.346	2.24
GOLD::GoldScore	0.295	0.322	2.29
SYBYL::PMF-Score	0.268	0.273	2.29
SYBYL::F-Score	0.216	0.243	2.35

R= 0.776 on independent test set (195 complexes)

RF-Score Output

J. Chem. Inf. Model. 2010, 50, 1961-1969

Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from **Diverse Protein Data Sets**

R= 0.776 on independent test set (195 complexes)

Journal of Chemical Information and Modeling

Scoring

Ideally, score would equal affinity – but this is an unsolved problem.

Journal of Chemical Information and Modeling

Scoring

Code 16

Ideally, score would equal affinity – but this is an unsolved problem.

 $R^2 = 0.28$

AR

Journal of Chemical Information and Modeling

Scoring

Code 1

Ideally, score would equal affinity – but this is an unsolved problem.

http://www.csardock.org/

Scoring

Ideally, score would equal affinity – but this is an unsolved problem.

Code 1

R² = 0.58 RMSE = 1.51

http://www.csardock.org/

Scoring State of the Art

Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. *PLoS ONE* 11(5): e0155183. doi:10.1371/journal.pone.0155183

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Key Idea: Leverage "big data" 231,655,275 bioactivities in PubCher

- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind

Machine Learning

Features $X \rightarrow Model \rightarrow y$ Prediction

Neural Networks

Neural Networks

The universal approximation theorem

states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

Deep Learning

Image Recognition

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

(R,G,B) pixel \rightarrow (Carbon, Nitrogen, Oxygen,...) **voxe** The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Optimized Models

48x48x48x28	

- 00
<u> </u>
~
•—
_
0
Ŷ
0
n
_
a)
~
>
-
<1
_
~ 1
\sim
~
$\dot{\mathbf{a}}$
~
\sim
\sim

-

24×24×24×35

3x3x3 Convolution

Rectified Linear Unit

24x24x24x32

IxIxI Convolution Rectified Linear Unit

24×24×24×32

2x2x2 Ave Pooling

12×12×12×32

3x3x3 Convolution

Rectified Linear Unit

|2×|2×|2×64

IxIxI Convolution

12x12x12x64

2x2x2 Ave Pooling

6x6x6x64

3x3x3 Convolution

Rectified Linear Unii

6x6x6x128

Fully Connected

L2 Loss

Softmax+Logistic Loss Fully Connected

Affinity

Pose Score

Pose Results

Pose Results

Affinity Results

Affinity Results

Beyond Scoring

Beyond Scoring

Beyond Scoring

Beyond Scoring

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams of Molecules

Deep Dreams of Molecules

Beyond Scoring

Beyond Scoring

Minimizing Low RMSD Poses

Iterative Refinement

Iterative Refinement

Iterative Refinement

Related Work

MolecuLeNet: A continuous-filter convolutional neural network for modeling quantum interactions

Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller (Submitted on 26 Jun 2017)

Automatic chemical design using a data-driven continuous representation of molecules

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, Alán Aspuru-Guzik (Submitted on 7 Oct 2016 (v1), last revised 6 Jan 2017 (this version, v2))

AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

Izhar Wallach, Michael Dzamba, Abraham Heifets (Submitted on 10 Oct 2015)

ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost

Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg

(Submitted on 27 Oct 2016 (v1), last revised 6 Feb 2017 (this version, v4))

Convolutional Networks on Graphs for Learning Molecular Fingerprints

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams

(Submitted on 30 Sep 2015 (v1), last revised 3 Nov 2015 (this version, v2))

Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity

Joseph Gomes, Bharath Ramsundar, Evan N. Feinberg, Vijay S. Pande (Submitted on 30 Mar 2017)

Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules

Alessandro Lusci'†, Gianluca Pollastri†, and Pierre Baldi'‡ † School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland + Department of Computer Science, University of California, Irvine, Irvine, California 92697, United States

J. Chem. Inf. Model., 2013, 53 (7), pp 1563–1575 DOI: 10.1021/ci400187y Publication Date (Web): June 24, 2013

Low Data Drug Discovery with One-shot Learning

Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, Vijay Pande (Submitted on 10 Nov 2016)

Massively Multitask Networks for Drug Discovery

Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, Vijay Pande (Submitted on 6 Feb 2015)

Protein–Ligand Scoring with Convolutional Neural Networks

Matthew Ragoza†‡, Joshua Hochuli‡¶, Elisa Idrobo[§], Jocelyn Sunserii, and David Ryan Koes^{*}i (b) [†]Department of Neuroscience, [‡]Department of Computer Science, [¶]Department of Biological Sciences, and [†]Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States [§] Department of Computer Science, The College of New Jersey, Ewing, New Jersey 08628, United States

J. Chem. Inf. Model., 2017, 57 (4), pp 942–957 DOI: 10.1021/acs.jcim.6b00740 Publication Date (Web): April 3, 2017 Copyright © 2017 American Chemical Society

