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Background Methods Results
A central problem of drug discovery is understanding how small molecules bind to proteins. To 
identify promising new therapies, we need to accurately predict both how molecules bind to 
proteins, and how strongly. Going beyond the preliminary screening stage, we also need 
models of binding that enable us to predict how to optimize a lead molecule to make it a 
stronger and more specific binder for a chosen protein target. Our software, gnina, aims to 
address all these goals by leveraging convolutional neural networks (CNNs) to predict which 
molecules in a database bind a chosen protein strongly, how they bind, and to design 
molecules that bind even more strongly. 
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CNN Model Architecture

Trained networks can be successfully used to augment existing ligand density or generate entirely 
new ligand density in an empty binding site.

In the above examples (PDB accession IDs 5A00, 184L, and 5A14), the crystal ligand is shown for 
reference, but it was not provided to the trained CNN as part of the input. Instead the receptor alone 
was provided, and the network produced the density shown in color.

Results for performing a virtual screen using Autodock Vina docked poses, a trained CNN rescoring 
the Vina-generated poses, or density maps generated from empty binding sites used to rank the 
docked poses using a Euclidean distance metric are shown above. Alternative training procedures 
and distance metrics are likely to improve performance.
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Via hyperparameter optimization we converged on this architecture, simultaneously optimizing for a 
binary classification (pose score) and regression (affinity) task. We have trained several variants 
with minor differences in architecture and training data. These are used to generate poses and 
predict binding strength; they can also be used to generate atom density maps that are applicable 
to tasks like virtual screening.

To use a CNN to perform a virtual screen or lead optimization, we first need to train a model that can 
discriminate binding modes from non-binding modes. Its performance depends significantly on training 
data, input representation, and training strategy.

(left) We train using clustered cross validation to provide a realistic estimate of generalization error. Docked 
poses are used as input, but crystal poses must be available so that distance from the crystal pose can be 
used as the determining factor in assigning the pose label. Data augmentation is used to provide 
regularization and simulated equivariance to input symmetries not preserved by our grid-based input 
representation. (right) We employ an iterative training approach to identify erroneous features learned by 
the model and modify them. 

A trained network can then be used to optimize atomic density maps, either by augmenting existing maps 
or by performing de novo generation of the “optimal binder” for a given protein binding site. Alternatively, 
maps can be created by using other types of generative neural networks, such as generative adversarial 
networks. Then the similarity between the grids for real conformers and the generated densities must be 
computed.

To generate density maps for ligands to be used in the virtual screen, docking may be performed; 
alternatively a pre-generated library of conformers (like that used in Pharmit, our pharmacophore-based 
virtual screening webserver) could be used to more quickly generate possible density maps. Once optimal 
and available ligand density maps have been generated, there are several possible methods for computing 
the similarity between the grids. These similarity scores (computed relative to the generated “optimal 
binder” map) are then used to rank the available compounds.

Input Optimization

Gradients obtained via backpropagation can be used to optimize the original neural network input. 
While they can be directed onto the atoms used to generate the input grid to perform a conventional 
optimization of the ligand pose, they can also be used to modify the atomic density grids directly, 
producing novel molecules.
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