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Abstract We assess the performance of several ma-

chine learning-based scoring methods at protein-ligand

pose prediction, virtual screening, and binding affinity

prediction. The methods and the manner in which they

were trained make them sufficiently diverse to evaluate

the utility of various strategies for training set curation

and binding pose generation, but they share a novel ap-

proach to classification in the context of protein-ligand

scoring. Rather than explicitly using structural data

such as affinity values or information extracted from

crystal binding poses for training, we instead exploit

the abundance of data available from high-throughput

screening to approach the problem as one of discrimi-

nating binders from non-binders. We evaluate the per-

formance of our various scoring methods in the 2015

D3R Grand Challenge and find that although the mer-
its of some features of our approach remain inconclu-

sive, our scoring methods performed comparably to a

state-of-the-art scoring function that was fit to binding

affinity data.
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1 Introduction

A scoring function that accurately represents and pre-

dicts ligand-protein interactions is essential for molec-

ular docking, energy minimization, and hit identifica-

tion/lead optimization in structure-based drug discov-

ery [1–10]. The development of an accurate and reliable

scoring function remains an unsolved problem [10–15].

Ideally, given a protein-ligand structure, a scoring func-

tion would be able to correctly place the true, crystal

pose of a ligand at a global minimum (pose prediction)

and, if provided poses at this global minimum, correctly

distinguish between active and inactive ligands (virtual

screening performance) by producing scores equivalent

to the binding free energy (binding affinity prediction).

Scoring function design philosophies generally span
a continuum between force-field based scoring, empir-

ical scoring, and knowledge-based scoring. Force-field

based scoring [7, 16–23] attempts to compute the phys-

ical interaction of the protein and small molecule and

includes terms such as van der Waals and electrostatic

interactions. These terms are typically parameterized

from first principles. Empirical scoring functions [24, 25,

25–30] include physically meaningful terms that may

not directly map to physical forces, such as hydropho-

bic terms, and are parameterized to reproduce binding

affinities or other data. Knowledge-based scoring [31–

37] takes advantage of the growing amount of structural

data to derive statistical potentials for ligand-protein

interaction patterns.

Parametric machine learning methods, such as lin-

ear regression, are often used to parameterize empirical

scoring functions. In contrast, non-parametric machine

learning methods, such as neural networks [38, 39], pro-

vide greater flexibility and expressiveness as they learn

both their model structure and parameters from data.
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Such methods have successfully been applied to scoring

protein-ligand interactions [36, 40, 41, 41–49]. These

scoring functions take as input a set of descriptors ex-

tracted from a protein-ligand complex. These descrip-

tors are either terms common to empirical scoring [47],

such as measures of electrostatic attraction, atom inter-

action counts [48], or more abstract interaction finger-

prints [44]. A disadvantage of non-parametric methods

is that their increased expressiveness increases the prob-

ability of overfitting the model to the data, in which

case the scoring function will not generalize to pro-

tein targets or ligand chemotypes not in the training

data. The risk of overfitting increases the importance

of rigorous validation [50, 51], but the inherent increase

in flexibility allows non-parametric methods to outper-

form more constrained methods when trained on the

identical input set [52].

As our entry in the Drug Design Data Resource

(D3R) blind challenge, we investigated a variety of ma-

chine learning techniques. We evaluated both structure-

based classification models and ligand-based regression

models. For our structure-based classification we ex-

plored using the DUD-E dataset [53] for training. In

contrast to the CSAR dataset [9] we have previously

used [24], DUD-E is much larger (more than 1 million

ligands), but lacks crystal structures for its more than

22,000 active ligands. Our goal in entering the D3R

evaluation was to prospectively assess the performance

of using structure-based training with generated DUD-

E poses with both parametric and non-parametric ma-

chine learning methods while also evaluating a purely

ligand-based QSAR method.

2 Methods

Our overall approach is shown in Figure 1. We con-

sidered both a ligand-based Quantitative Structure Ac-

tivity Relationship (QSAR) approach and a structure-

based docking and scoring approach. For the ligand-

based approach we train a regression model from bind-

ing affinity data using RDKit [54] and a variety of chem-

ical fingerprints. For the structure-based approach we

make extensive use of smina [24], a fork of AutoDock

Vina with enhanced capabilities for custom scoring func-

tion development, and the AutoDock Vina [30] scor-

ing function. We evaluated a unique approach where

we train classification models on binary binding data

and used these classification models to rank and select

docked poses.

The 2015 D3R Grand Challenge consisted of both

affinity prediction and pose prediction exercises for two

blinded collections of compounds for two targets: Heat

Machine Learning 
Classification

smina
Vina scoringLigands

Pose Selection &
Affinity Prediction

Training SetMachine Learning 
Regression

RDKit
Fingerprints

Affinity Prediction

Docked Poses

Fig. 1 The overall approach for our D3R submission. D3R
ligands were ranked using a 2D QSAR approach trained us-
ing ChEMBL data (left side) or through a structure-based
docking and scoring approach that used the DUD-E data set
to train custom scoring functions for re-ranking poses docked
using smina and the AutoDock Vina scoring function (right
side).

Shock Protein 90 (HSP90) and mitogen-activated pro-

tein kinase kinase kinase kinase (MAP4K4). 180 ligands

were provided for HSP90 with IC50 activities ranging

from 5nM to inactive and six crystal structures were

left blinded as part of the competition. The MAP4K4

dataset consisted of 30 compounds, all with co-crystal

structures, but only 18 of which had measured IC50

data. Consequently, the HSP90 target is most useful for

assessing binding affinity prediction and virtual screen-

ing performance while the MAP4K4 target is most suited

for pose prediction evaluation.

2.1 Ligand-Based Regression

The goal of 2D QSAR modeling [55] is to generate

a predictive model of a desired property, in our case

binding activity, from a training set of molecules with

known activity using descriptors generated from the

2D topology of the compounds. Using three different

2D fingerprint descriptors, we created three different

models for HSP90 binding from the same training set.

The code used to build our models is available under

a permissive open source license at https://github.

com/dkoes/qsar-tools and complete details of our ap-

proach are provided in the Supplementary Information.

2.1.1 Training Set

Compounds with published activity were extracted from

the ChEMBL bioactivity database [56]. Specifically, we

collected active compounds from the CHEMBL3880 tar-

get (HSP90 alpha) that had IC50 values with an equal-

ity relation expressed in nM units and a pChEMBL

greater than zero (this is a negative logarithm used

https://github.com/dkoes/qsar-tools
https://github.com/dkoes/qsar-tools
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to standardize across different activity measurements).

The resulting 355 active compounds spanned a pChEMBL

range from 4 (100µM ) to 9 (1nM). These compounds

were then stripped of any salts and a variety of descrip-

tors were calculated.

2.1.2 Descriptors

We calculated Boolean fingerprint descriptors, which

encode a molecule as a binary string where each bit

position corresponds to the presence or absence of a

specific pattern of atoms in the molecule. We evalu-

ated three different fingerprints: default RDKit (2048

bits), unfolded path (variable bits), and circular ECFP6

(2048 bits).

Default RDKit The default RDKit fingerprint enumer-

ates all paths (including branched paths) of a molecule

with up to 7 bonds. These paths, including their atom

and bond type information, are then doubly hashed to

a bit position within a 2048 bit vector. The use of a

constant fingerprint size means the fingerprint is gen-

eral and can be broadly applied for similarity calcula-

tions, but introduces the likelihood of collisions where

the same bit position corresponds to multiple distinct

atom patterns.

Unfolded Path For our unfolded path fingerprints, we

enumerated all possible unbranched paths, including

atom and bond type information, present in the mole-

cules of the training set resulting in 6628 distinct atom

patterns. Each path was then assigned a unique bit in a

bit vector. In this case, every bit in the fingerprint un-

ambiguously corresponds to a specific atom pattern. If

new atom patterns are encountered when fingerprinting

molecules not in the training set they are ignored.

Circular ECFP6 Extended connectivity fingerprints [57]

enumerate atom patterns that represent the neighbor-

hood of each atom up to a circular diameter, in our case

6, of bond lengths. These descriptors are then folded

into a 2048 bit fingerprint with RDKit.

2.1.3 Elastic Net Linear Model

We create predictive linear models from the training

set and descriptors using the ElasticNet module of the

popular scikit-learn [58] Python package. An elastic net

model includes both an L1 and L2 regularization factor:

min
w

1

2nsamples
||Xw − y||22 + αρ||w||1 +

α(1− ρ)

2
||w||22

where X are the input binary features, y are the labels

(affinity values), w are the weights of the model, and α

Balanced

Reduced

102 Targets

smina
Vina scoring

25,913,363 Poses
Select Top

1,162,031 decoys
20,441 actives

Balance

20,441 decoys
20,441 actives

HSP90

HSP90
Target
Balanced

65 decoys
88 actives

Target
Reduced

4,335 decoys
88 actives

Fig. 2 Our workflow for generating structural training sets
from the DUD-E dataset.

and ρ are parameters controlling the degree of regular-

ization. Increased regularization drives weight values to

zero, reducing the number of selected features. This re-

duces the amount of overfitting in the model at the cost

of reduced expressiveness. In order to set these regular-

ization parameters we apply an internal cross-validation

to identify the best parameters for the training set. Us-

ing this approach we achieved internal cross-validation

R2 correlations of 0.52, 0.50, and 0.60 using the default

RDKit fingerprints, unfolded path, and circular ECFP6

fingerprints respectively.

2.2 Structure-Based Classification

For our structure-based workflow, which unlike the ligand-

based regression also produces pose predictions, we use

docked poses to train models to distinguish between

binders and non-binders. These models are then used

to re-rank and select docked poses of the D3R ligands.

2.2.1 Training Set

The workflow for training set construction is shown in

Figure 2. Somewhat unconventionally, we chose to train

structure-based models using a dataset, the Enhanced

Directory of Useful Decoys (DUD-E) [53], that lacks

protein-ligand structures. The advantage of DUD-E is

its large size: it consists of 102 targets, more than 20,000

active molecules, and more than a million decoy mol-

ecules. The disadvantage is that compounds are clas-

sified as active/decoy (no binding affinity information)

and structures are not available. To address this, we

train our models as binary classifiers on docked poses.

The docked poses are generated using smina [24] using

the AutoDock Vina scoring function. Input ligands are

converted to a single 3D conformer using RDKit which

is then docked as a flexible ligand (hence the need to

only generate a single conformer as rotatable bonds are

sampled during docking). We dock against the refer-

ence receptor provided with DUD-E in a box centered
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around the reference ligand with 8Å of padding and se-

lect the top ranked pose as the structure to use for that

ligand. This results in a highly imbalanced and noisy

training set that is dominated by decoys. To enhance

the signal exhibited by the active set, we also create

a balanced set with equal numbers of decoy and ac-

tive compounds. Since DUD-E includes an HSP90 tar-

get, we also extract a target specific set from these two

larger training sets.

2.2.2 Descriptors

We distill every protein-ligand pose in our training set

into a numerical vector of interaction features computed

using smina and custom code to produce the descriptors

shown in Figure 3. The custom code is primarily used

to calculate descriptors that include a solvent accessible

surface area (SASA) term, since smina only computes

pairwise interaction terms. An assortment of param-

eterized smina terms are used and include steric, hy-

drophobic, van der Waals, hydrogen bonding, solvation,

electrostatic (partial charges computed using Open Ba-

bel [59]), and non-interaction count/summation terms.

Finally, we also include the AutoDock Vina score for a

total of 61 features.

For purposes of internal validation, we first eval-

uated our models using clustered cross-validation [50]

where we partitioned the DUD-E training set at a target

granularity into multiple folds. This provides a greater

measure of generalizability since trained models are tested

on entirely new targets. For training, as we are perform-

ing classification, we evaluated the ability of a model

to properly rank compounds using the area under the

curve (AUC) of the receiver operating characteristic

(ROC) curve. A perfect ranking of ligands produces an

AUC of 1.0 and a random ranking results in an AUC of

0.5. Models used for our D3R predictions were trained

on the entire training set.

2.2.3 Linear Regression Model

Using scikit-learn [58] with default parameters we eval-

uated both linear regression and logistic regression, which

is more commonly used in classification tasks, and found

they produced nearly identical results in our cross-val-

idation analysis. They both achieved an average AUC

of 0.77 in 10-fold cross-validation when trained on the

balanced training set. Since linear models are faster to

evaluate and train, have more interpretable coefficients,

and produce a wider range of prediction values (unlike

logistic regression which is capped between zero and

one), we selected a linear regression model for our D3R

submission.

Steric

gauss(o=0,w=0.5,c=8)
gauss(o=3,w=2,c=8)
gauss(o=1.5,w=0.3,c=8)
gauss(o=2,w=0.9,c=8)
gauss(o=1,w=0.9,c=8)
gauss(o=1,w=0.5,c=8)
gauss(o=1,w=0.3,c=8)
gauss(o=1,w=0.7,c=8)
gauss(o=2,w=0.5,c=8)
gauss(o=2,w=0.7,c=8)
gauss(o=3,w=0.9,c=8)
repulsion(o=0,c=8)

Hydrophobic

hydrophobic(g=0.5,b=1.5,c=8)
hydrophobic(g=0.5,b=1,c=8)
hydrophobic(g=0.5,b=2,c=8)
hydrophobic(g=0.5,b=3,c=8)
non hydrophobic(g=0.5,b=1.5,c=8)

van der Waals
vdw(i=4,j=8,s=0,=̂100,c=8)
vdw(i=6,j=12,s=1,=̂100,c=8)
e vdw

Hydrogen Bond

non dir h bond(g=-0.7,b=0,c=8)
non dir h bond(g=-0.7,b=0.2,c=8)
non dir h bond(g=-0.7,b=0.5,c=8)
non dir h bond(g=-1,b=0,c=8)
non dir h bond(g=-1,b=0.2,c=8)
non dir h bond(g=-1,b=0.5,c=8)
non dir h bond(g=-1.3,b=0,c=8)
non dir h bond(g=-1.3,b=0.2,c=8)
non dir h bond(g=-1.3,b=0.5,c=8)
non dir anti h bond quadratic(o=0,c=8)
non dir anti h bond quadratic(o=0.5,c=8)
non dir anti h bond quadratic(o=1,c=8)
non dir h bond lj(o=-0.7,=̂100,c=8)
non dir h bond lj(o=-1,=̂100,c=8)
non dir h bond lj(o=-1.3,=̂100,c=8)
e hb
e ligPen

Solvation

ad4 solvation(d-sigma=3.6,s/q=0.01097,c=8)
ad4 solvation(d-sigma=3.6,s/q=0.01097,c=8)
e s1
e s2
e s3
e s4
e s5

Electrostatic

electrostatic(i=1,=̂100,c=8)
electrostatic(i=2,=̂100,c=8)
e E0
e E1

Counts

num tors div
num heavy atoms div
num heavy atoms
num tors add
num tors sqr
num tors sqrt
num hydrophobic atoms
ligand length
numBonds
bfO
bfN
myRotors

Fig. 3 Structure-based descriptors used to train machine
learning models. Italicized features are computed outside of
smina and include solvent accessible surface area (SASA)
atom type specific solvation terms (es 1 -es 6 ) and buried-
ness terms (bfO , bfN ).

2.2.4 Neural Network Model

As an additional model, we trained a neural net with a

single hidden layer of 20 nodes and two output classes

(active or decoy) using the Caffe deep learning frame-

work [60]. The model used sigmoid activation in the hid-
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den layer and a softmax function to normalize the out-

put. It was trained by stochastic gradient descent with

an inverse learning rate decay function (ηi = 0.01, γ =

0.0004, power = 2) and momentum (α = 0.9) to mini-

mize the multinomial logistic loss. Training occured for

10,000 iterations with a batch size of 20,000 examples.

When trained on the unbalanced dataset, class weights

were applied when computing the loss to balance the

influence of the negative examples with the underrep-

resented positive examples. The 10-fold cross-validated

AUC for the model was 0.74 using the balanced dataset

and 0.73 on the unbalanced dataset.

2.3 Test Set

The provided SMILES of the D3R ligands were con-

verted into a single conformer with RDKit and then

docked with smina [24]. The binding site was defined

using the cognate ligand of the receptor. Unlike with the

training set, we increased the amount of sampling per-

formed during docking (--exhaustiveness 50) to in-

crease the chance of identifying high-quality poses. For

the HSP90 target we limited ourselves to the four re-

ceptors referenced by the D3R organizers: 2JJC, 2XDX,

4YKR, 4YKY. Since the presence of waters was explic-

itly called out by the organizers, we docked to varia-

tions of these structures with zero, one, or two waters

within the binding site. For each receptor structure, we

generated up to 9 distinct poses for a total of 21,893

poses.

For MAP4K4, we also limited ourselves to the two

structures referenced by the organizers: 4OBO and 4U44.

In this case, since the organizers explicitly called out

the flexibility of the structure we ran a 100ns molec-

ular dynamics simulation using Amber14 and and the

amberff14sb force field with TIP3P water under neu-

tral conditions. In order to prepare the structures for

simulation, we modeled missing loops as needed with

the FREAD loop modeling server [61] and PyMOL. A

greedy top-down clustering algorithm was then used to

select ten diverse, as measured by backbone RMSD,

frames from the 100ns simulation. The distributions

of sampled backbone RMSDs are shown in Figure S1.

Compounds were docked to these ten structures and

the original crystal and up to 9 distinct poses were gen-

erated for each receptor for a total of 5,329 poses.

Our linear regression and neural network models

were applied to all generated poses and the best scoring

poses for each ligand were submitted as our predicted

poses and the score of the best scoring pose was used

for our submitted affinity predictions.

3 Results

The MAP4K4 and HSP90 datasets each served as a spe-

cialized evaluation task based on the nature of the data

available: MAP4K4 had 30 blinded crystal structures

that served to test pose prediction performance, while

HSP90 had blinded affinity data for 180 ligands that

could be used to evaluate virtual screening methodolo-

gies. Both sets had a relative paucity of data available

for the other task - affinity data for 18 ligands in the

case of MAP4K4 and crystal poses for 6 ligands in the

case of HSP90 - and we thus focus much of the analysis

of our performance on each task on the dataset suited

to that task.

There are several axes of analysis, each elucidating

the utility of a particular method we used to train and

select classification models as well as generate instances

to test them. Broadly, there are differences in the type

of classification model (linear regression, linear regres-

sion including an L1 regularization term, and a neural

net), the dataset used to train the classifier (the bal-

anced and reduced datasets, and the targeted datasets

in the case of HSP90), and the methods used to gener-

ate an ensemble of receptor structures used to created

poses for the test sets. Although we did not submit the

predictions from our linear classifier with an L1 lasso to

the challenge, we include the data from its predictions

here for the purposes of evaluation.

3.1 Pose Prediction

Given the 30 MAP4K4 crystal poses released at the

close of Stage 1 of the challenge, we computed RMSDs

of our predicted poses to the provided 4OBO aligned

crystal poses. This information was then used to assess

the performance of our training and testing methodolo-

gies across all the axes described above. In general we

wanted to know whether it was more likely to observe

low RMSD poses using a particular methodology, either

in the top ranked pose for a given ligand or considering

a subset of the top-ranked poses.

Since a scoring function’s ability to rank low-RMSD

poses is limited by our ability to sample low-RMSD

poses, we first focus on our pose sampling in the test

set. Figure 4 shows that half of the ligands have at least

one pose under 2.0 RMSD with the 4OBO crystal struc-

ture, which outperforms all other receptor structures in

generating low RMSD poses. One of the 4U44 ensem-

ble receptors outperforms the 4U44 crystal structure

at generating low RMSD poses, successfully yielding a

pose under 2.0 RMSD 37% of the time, compared to

23% of the time with the crystal structure. However,
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Fig. 4 Fraction of ligands with poses under a given RMSD,
colored by the receptor structure associated with the subset
of poses used for the calculation. The starting PDB crystal
structures are shown with dashed lines in the darkest colors,
while the structures generated from molecular dynamics sim-
ulations are colored according to a gradient based on their
frame number, representing their distance from the initial
crystal structure used to start the simulation.

that structure is the first frame from the molecular dy-

namics simulation, suggesting that the pre-simulation

minimization of the crystal structure may have been

sufficient to produce better poses with 4U44. Of the 23

ligands for which we successfully sampled a pose under

2.0 RMSD, docking to one of the crystal structures was

sufficient to produce such a pose for all but one. How-

ever, considering the lowest RMSD pose available in

the test set for each of the ligands reveals that 14 lig-

ands exhibited their lowest RMSD pose when docked

to a simulation derived receptor rather than a crystal

receptor structure, suggesting there was some value in

performing the ensemble docking.

Figure 5 shows the mean across all ligands of the

RMSD of the best pose seen so far at a given rank for

each of the methods used to score and then rank poses.

It indicates that for the majority of the values shown,

the scoring functions trained on the reduced datasets

outperformed those that were trained on the balanced

datasets. The linear regression scoring function trained

with lasso was the method that performed best overall,

returning a pose within 4.0 RMSD on average by the

fourth ranked pose; however, all methods except Vina

(included as a baseline) and the lasso method trained on

the balanced dataset returned a pose within 4.0 RMSD

on average within the top five ranked poses. On average,

no methods returned a pose within 2.0 RMSD in the

top 25 ranked poses, despite the fact that 23 ligands

had such a pose in the set of poses we generated via

docking for the test set.

Fig. 5 The average of the best RMSD observed for each
ligand up to a given rank, compared across all the methods
with Vina’s performance used as a baseline.

Figure 6 demonstrates that if only poses generated

from the 4OBO crystal structure had been scored, a

greater number of poses within 4.0 RMSD would have

appeared as the top ranked pose chosen by all of the

scoring methods except Vina. The assessment of the

poses generated by 4U44 is more equivocal; while the

lasso- and neural net-based methods demonstrate im-

proved sampling of low RMSD poses if they are re-

stricted to poses generated using 4U44, only for the

lasso method trained using the balanced dataset does

the lower quartile improve by nearly 2.0 RMSD, with a

weaker effect observed for the other methods. The me-

dians of the linear scoring function rankings improve

by around 2.0 RMSD by using the full set of poses gen-

erated via the complete receptor ensemble rather than

the 4U44 crystal structure.

Figure 7 views the rank1 poses produced by each

method based on the ligand with which they were asso-

ciated. One of our methods (not including Vina) gave

top rank to a pose within 4.0 RMSD for 13 of the lig-

ands and within 2.0 RMSD for 6 of the ligands. Linear

regression or linear regression with lasso, both trained

using the reduced dataset, were the methods most suc-

cessful at selecting low RMSD poses. Of the 17 ligands

for which we failed to place a pose under 2.0 RMSD

at rank 1, seven had no such pose in the dataset. The

remaining ten had at least one pose under 2 RMSD in

the dataset, but none of our methods correctly identi-

fied any such pose at rank 1. The ligand the methods

had the most trouble with, despite the presence of a

low (< 1Å) RMSD pose, was MAP07, which is shown

in Figure 8. MAP07 has a cyclopropane group that is

solvent exposed in the crystal, but all our methods (and

Vina) prefer poses where this group is more buried.
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Fig. 6 Assessment of the mean rank 1 pose RMSD across all
30 ligands, comparing the different classifiers and the methods
used to train them, as well as the receptor structures used to
generate poses. Boxes show quartiles, lines bisecting the boxes
indicate the location of the median, while stars indicate the
location of the mean.

A similar analysis was performed for the 6 ligands

in the HSP90 dataset for which crystal structures were

made available at the end of the challenge. The linear

regression model trained on the balanced dataset was

the best performing method on that task, with an aver-

age rank 1 pose RMSD of 1.9. However, Vina was more

successful at predicting the lowest RMSD poses found

in the top 5 ranking, reaching 0.98 RMSD by rank 5.

The other methods performed significantly worse than

Vina at every rank, and there was no clear consensus
regarding whether training with the balanced or the re-

duced datasets proved advantageous for this task. The

targeted training set produced scoring functions that

performed the worst overall, generating poses that were

on average 1-2.5 RMSD worse than those generated

by the non-targeted version of the scoring function. In

terms of sampling, two of the receptors produced poses

within 2.0 RMSD for five of the six ligands, ten recep-

tors produced poses within 4.0 RMSD for all of the

ligands, and all receptors produced poses within 4.0

RMSD for four of the six ligands. Of the seven receptors

that produced poses within 2.0 RMSD for at least four

ligands, five used crystal waters in docking and two did

not; of the two receptors that produced poses within 2.0

RMSD for at least five ligands, one used crystal waters

and the other did not. This suggests that including crys-

tal waters may enhance sampling of low RMSD poses

and, at a minimum, is not detrimental. However, the

small size of the HSP90 test set prevents any definitive

conclusion.

Fig. 7 RMSD of the rank 1 pose each method selected for
each ligand in the MAP4K4 test set. The dashed gray line
shows the lowest RMSD that could have been obtained by
selecting poses from the test set.

Fig. 8 An example of a challenging ligand for pose selection.
The crystal pose for MAP07 is shown as thin yellow sticks
while a pose top-ranked by a linear method for this receptor
is shown in magenta sticks. The surface of the top of the
binding pocket is removed for clarity.

3.2 Virtual Screening Performance

As the HSP90 set of 180 ligands included inactive com-

pounds, it provides a means to evaluate virtual screen-

ing performance, that is, how well the various scoring

methods discriminate between binders and non-binders.

The cutoff for activity was set at 50µM resulting in

136 active and 44 inactive compounds. The score of the

top ranked pose selected by each scoring method was

used to rank each ligand. The area under the curve

(AUC) of the receiver operating characteristic (ROC)

curve for the various methods is shown in Figure 9 with

95% confidence intervals, and the ROC curves for se-

lected methods are shown in Figure 10. The best AUC

of 0.65 was achieved by Vina, but the structure-based

methods trained using the balanced set and the ECFP6
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Fig. 9 Area under the curve (AUC) of the ROC curves gen-
erated using various methods to rank HSP90 ligand poses. Er-
ror bars indicate the 95% confidence interval as determined
by bootstrapping with replacement (1000 iterations). Com-
pounds with a reported activity greater or equal to 50µM
were considered inactive.

ligand-based method all performed similarly with AUCs

of 0.63 or better.

Methods trained using the reduced set, in which de-

coy examples are not down-sampled to balance the ef-

fect of active and inactive compounds on training, fared

more poorly. Methods trained on the HSP90 target-

specific balanced set were worse than random. Of the

ligand-based methods, only ECFP6 fingerprints pro-

duced an AUC that was meaningfully above random.

Although Vina, ECFP6, and the balanced methods

perform similarly, they still score ligands differently, as

shown in Figure 11 which plots the ligand scores of

the different methods with respect to each other. The

structure-based methods are more correlated with one

another than with the ligand-based method.

3.3 Affinity Prediction

Both the HSP90 and MAP4K4 sets provide an op-

portunity to assess the ability of the methods to ac-

curately predict the reported activity. Overall correla-

tions between predicted and experimental activity for

the HSP90 ligands are shown in Figure 12. As with the

virtual screening results, Vina and the structure-based

methods trained on the balanced set perform similarly

and the methods trained on the HSP90 target-specific

training set perform poorly. Methods trained on the re-

duced set have similar performance to Vina, with the

neural net model achieving the highest Spearman corre-

lation coefficient of 0.40. However, this is not a particu-

larly high correlation and is not substantially more than

the dataset’s correlation with molecular weight (0.34).

Both the ECFP6 and RDKit 2D QSAR regression mod-

els achieve statistically significant correlations, but do

not outperform the structure-based methods.

The MAP4K4 dataset has substantially fewer com-

pounds with reported activities (17 ligands) which, as

indicated by the 95% confidence intervals in Figure 13,

makes it difficult to meaningfully compare methods.

However, since the MAP4K4 dataset has the advan-

tage of providing crystal structures for all 17 ligands,

we also evaluated affinity prediction performance when

scoring the pose with the closest RMSD to the crystal

ligand instead of the pose top-ranked by the scoring

function. Interestingly, as shown in Figure 13, scoring

this superior pose did not result in improved correla-

tions, statistically significant or otherwise.

4 Discussion

The 2015 D3R Grand Challenge provided an excel-

lent opportunity to prospectively evaluate pose predic-

tion and scoring methods. We evaluated both structure-

based and ligand-based machine learning approaches.

Somewhat surprisingly [62], the 3D structure-based meth-

ods outperformed the 2D methods for the one target,

HSP90, where there was sufficient data to construct

QSAR models. Although it is possible that the use of

more expressive features [63] or models [64] would im-

prove the results, a more likely issue lies in the coverage

of the training set with respect to the D3R ligands. Fig-

ure 14 show the HSP90 datasets plotted with respect

to the first to principal components of the D3R lig-

ands as computed using OpenBabel FP2 fingerprints.

The three congeneric series of the D3R set are clearly

distinguished as three separate clusters. The ChEMBL

dataset used with the ligand-based methods fully cov-

ers one cluster but only partially covers the remaining

two. In contrast, the DUD-E HSP90 set used for the

target-specific structure-based scoring functions has lit-

tle overlap with the D3R ligands. This property, com-

bined with the set’s small size (88 active ligands), was

likely a major factor in the poor performance of these

methods.

We used the D3R exercise to evaluate a variety of

machine learning based scoring methods that were trained

using a novel classification approach. Rather than fit-

ting to affinity data or pose RMSDs, this approach

seeks to leverage the large amount of high-throughput

screening data available from a wide variety of sources.

Framing the problem as a classification between binders

and non-binders automatically normalizes for different

assay outcomes. In order to utilize binding data in a

structure-based approach, protein-ligand structures must

be produced through docking. The end result is a large

(the DUD-E set used here has more than one million
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Fig. 10 The ROC curves for HSP90 ligands generated using structure-based methods trained on a balanced training set (left)
and curves of ligand-based methods (right). Compounds with a reported activity greater or equal to 50µM were considered
inactive.
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ligands), but extremely noisy (due to docking inaccura-

cies) dataset. A key goal of this exercise was to evalu-

ate the feasibility of such a training approach as well as

compare different approaches to training set construc-

tion (i.e., balanced vs reduced).

Although the machine learning approaches did not

outperform the AutoDock Vina scoring function, they

Balanced Reduced Target
Balanced

2D QSAR
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ar
m

an
C

or
re

la
tio

n

Vina

MolWeight

Lasso

Linear

Neural Net

ECFP6

RDKit

SMARTS

Fig. 12 Spearman correlation coefficients using various
methods to rank HSP90 ligands. Only ligands with reported
IC50s below 50µM were considered. Error bars indicate the
95% confidence interval as determined by bootstrapping with
replacement (1000 iterations).

did perform comparably at pose prediction, virtual screen-

ing, and affinity prediction. This may not seem surpris-

ing as the terms of the AutoDock Vina scoring function

were included as training features. In fact, one of the

features was the AutoDock Vina score itself, but omis-

sion of the Vina score from the training data produces

essentially identical results (score predictions correlate

with R>0.99). Nonetheless, we find it encouraging that

two distinct modeling methods, linear regression and

neural networks, can exploit a large, noisy dataset such

as docked DUD-E poses, to achieve comparable results
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ranked by the given method (left) or the ligand pose with the
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indicate the 95% confidence interval as determined by boot-
strapping with replacement (1000 iterations).
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Fig. 14 (Left) Structure-based (DUD-E) and ligand-based
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to a state-of-the art scoring function. The comparison

between training set construction approaches was in-

conclusive with the reduced set producing somewhat

better results for MAP4K4 pose prediction and the bal-
anced set outperforming on HSP90 screening and affin-

ity prediction. Larger, more accurate training data com-

bined with more expressive structural input features or

alternative machine learning approaches should further

improve the usability and accuracy of scoring functions

learned through classification of docked poses.
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26. H. J. Böhm. The development of a simple em-

pirical scoring function to estimate the binding

constant for a protein-ligand complex of known

three-dimensional structure. J. Comput.-Aided

Mol. Des., 8(3):243–256, 1994. ISSN 0920-654X.

[PubMed:7964925].

27. R. Wang, L. Lai, and S. Wang. Further develop-

ment and validation of empirical scoring functions

for structure-based binding affinity prediction. J.

http://www.ncbi.nlm.nih.gov/pubmed/21830787
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190652
http://dx.doi.org/10.1021/ci2000727
http://www.ncbi.nlm.nih.gov/pubmed/3127588
http://www.ncbi.nlm.nih.gov/pubmed/20357802
http://dx.doi.org/10.1038/nrd3139
http://www.ncbi.nlm.nih.gov/pubmed/21780807
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183266
http://dx.doi.org/10.1021/ci200146e
http://www.sciencedirect.com/science/article/B6WK7-45MG2MC-5D/2/6bd203c800c04024407f7f216171b96a
http://www.sciencedirect.com/science/article/B6WK7-45MG2MC-5D/2/6bd203c800c04024407f7f216171b96a
http://www.sciencedirect.com/science/article/B6WK7-45MG2MC-5D/2/6bd203c800c04024407f7f216171b96a
http://www.ncbi.nlm.nih.gov/pubmed/8780787
http://dx.doi.org/10.1006/jmbi.1996.0477
http://dx.doi.org/10.1021/acs.jctc.5b00864
http://dx.doi.org/10.1021/acs.jctc.5b00864
http://dx.doi.org/10.1021/ci8001167
http://dx.doi.org/10.1021/ci8001167
http://www.ncbi.nlm.nih.gov/pubmed/16200636
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1989667
http://dx.doi.org/10.1002/jcc.20290
http://www.ncbi.nlm.nih.gov/pubmed/11394736
http://www.ncbi.nlm.nih.gov/pubmed/9126849
http://dx.doi.org/10.1006/jmbi.1996.0897
http://pubs.acs.org/doi/abs/10.1021/ci300604z
http://pubs.acs.org/doi/abs/10.1021/ci300604z
http://www.ncbi.nlm.nih.gov/pubmed/23379370
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726561
http://dx.doi.org/10.1021/ci300604z
http://www.ncbi.nlm.nih.gov/pubmed/9385547
http://www.ncbi.nlm.nih.gov/pubmed/7964925


12 Jocelyn Sunseri et al.

Comput.-Aided Mol. Des., 16(1):11–26, 2002. ISSN

0920-654X. [PubMed:12197663].
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