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In this tutorial we will describe how to use smina to perform structure-based virtual screening
against the calcium-dependent protein kinase 1 (CDPK1) of E. tenella. E. tenella is a parasite that
infects young poultry and results in potentially fatal coccidiosis. Although no structure is available
for this enzyme, structures of the enzyme in related parasites, C. parvum and T. gondii, are
available, and there is bioactivity data available for small molecules active against these enzymes.

We will explain how to analyze these known structures, evaluate the performance of docking
with smina against these structures, create a custom scoring function using these docking results,
create a structural model of E. tenella with SWISS-MODEL, and perform a virtual screen against
E. tenella CDPK1.

Assumptions and Conventions We assume that the reader is familiar with the Linux command-
line and is able to install the necessary software. The tutorial was implemented and tested on
Ubuntu Linux 12.04. Commands for the bash command-line environment are displayed:
echo "Hello"

Commands for the R statistical computing environment are displayed:
print ('Hello ')

Commands for the python-based PyMOL environment are displayed:
print "Hello"

Software License Source
color by mutation.py GNU http://www.pymolwiki.org/index.php/Color_By_Mutations

PyMOL v1.6.0 Python http://sourceforge.net/projects/pymol/

R v3.0.3 GPLv2 http://r-project.org

RDKit 2012 06 1 BSD Style http://rdkit.org/

sdsorter 2014-02-19 GPLv2 http://sourceforge.net/projects/sdsorter/

smina [ab615b] GPLv2 http://sourceforge.net/projects/smina/

1 Validation of C. parvum and T. gondii crystal structures

First we analyze the E. tenella sequence and examine the structural differences and similarities
between the three targets. We then create a virtual screening benchmark using available binding
data for C. parvum and T. gondii and dock these benchmark compounds. We use the results of
docking to select crystal structures for virtual screening and additional modeling.
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(a) (b)

Figure 1: BLASTing E. tenella. (a) In the search screen we provide the E. tenella sequence and specify
the Protein Data Bank database. (b) The results show the available structures with high sequence identity
to E. tenella.

1.1 Target Analysis

First, we analyze the provided E. tenella sequence and C. parvum and T. gondii structures.

1.1.1 E. tenella Sequence Analysis

1. Copy or download the FASTA sequence for E. tenella (http://www.ncbi.nlm.nih.gov/
protein/CAA96439).

2. Start a protein BLAST search http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp.

3. Paste or upload the FASTA sequence and change the database to Protein Data Bank (see
Figure 1(a)).

4. Run the BLAST search.

5. Analyze the results (Figure 1(b)). The top ranked hit is from Neospora Caninum (4M97), but
it is closely followed by several structures from T. gondii (4M7N, 3KU2, 3I79, 3HX4, 3I7C)
with >80% sequence identity. This first C. parvum hit (3IGO) has 62% sequence identity.

From this analysis we conclude that CDPK1 of T. gondii has a higher sequence identity to E.
tenella compared to C. parvum. This suggests that a T. gondii structure is the more logical choice
for homology modeling.
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Figure 2: Homology modelling E. tenella. (a) In the search screen we provide the E. tenella sequence and
specify 3I79 from T. gondii as our template structure. (b) The results show the available structures with
high sequence identity to E. tenella.

1.1.2 Structure Analysis

In order to identify the CDPK1 binding site differences between T. gondii and E. tenella, we create
a homology model for E. tenella and use color by mutation.py and PyMol to quickly visualize
the sequence differences on the structures.

1. Go to SWISS-MODEL [2] (http://swissmodel.expasy.org/) and click on Automated Mode.

2. Input the FASTA for E. tenella and specify 3I79 as a template (Figure 2(a)).

3. Download the PDB file from the results (Figure 2(b)).

4. Load the model, 3I79, and 3NCG into PyMOL.
load swissmodel .pdb
fetch 3I79
fetch 3NCG

5. Align the structures.
alignto

6. Extract the ligand BK1 from 3NCG and hide the rest of the structure. Since 3I79 is unbound,
we will use this ligand to delineate the binding site.
extract bk1 ,resn BK1
hide (/3NCG/)
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Figure 3: The binding site of the E. tenella model compared to the 3I79 structure of T. gondii.

7. Inspect the residues of the model and 3I79 around the binding site. Notice that SWISS-
MODEL has faithfully duplicated the side chain conformations.

8. Color the model and 3I79 by mutation.
run color_by_ mutation .py
color_by_ mutation .py swissmodel ,3 i79

9. Inspect the binding site. Notice that GLY128 in 3I79 is mutated to THR 105 in the E. tenella
model (see Figure 3). The rest of the binding site is largely unchanged.

10. Repeat this analysis for 3NCG. Notice that this C. parvum structure has several more muta-
tions in the binding site.

1.2 Benchmark Creation

Assays against both T. gondii and C. parvum CDPK1 are published in PubChem. Here we will
use this data to construct virtual screening benchmarks against these two targets.

1. Assemble active compounds

(a) Identify actives in PubChem (http://pubchem.ncbi.nlm.nih.gov). Search assays for
CDPK1 and sort the results by number of actives. Choose the three largest biochemical
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assays for each target.
T. gondii:
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=677062
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=600378
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=672956
C. parvum:
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=600379
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=672955
http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=66097

(b) Download actives. Click on the SDF download button and choose ‘Structures (SDF,etc.)
- Active’. Select uncompressed SMILES format.

(c) Fix SMILES. The downloaded file has the SMILES string and title in the wrong order.
Additionally, we need to remove salts and append the keyword ‘active’ to the title of all
active compounds. For each downloaded file, e.g. aid677062.txt, execute:
awk '{print $2,$1"_ active "}' aid677062 .txt | \

sed 's/\.Cl//' > aid677062 .smi

(d) Combine actives into a single file for each target.
cat aid*.smi > actives .smi

There should 156 actives for T. gondii and 89 actives for C. parvum.

2. Create Decoy Set Since there is very little data on inactive compounds for these targets, we
will generate a set of inactive decoys using the Database of Useful Decoys: Enhanced (DUDE)
[4] method for sampling decoys from the ZINC database [1]. These decoys are selected to be
chemically dissimilar from the provided active compounds (and therefore unlikely to bind)
while still matching simple molecular properties such as molecular weight, calculated logP,
and the number of rotatable bonds and hydrogen bond acceptors/donors.

(a) Create decoy set from active set using the DUDE website (http://dude.docking.
org/generate). This will produce a tarball, dude-decoys.tar.gz, that contains 50
property-matched decoys for each provided active in the subdirectory decoys.

(b) Combine decoys into a single file.
cat decoys /* | grep -v ligand > decoys .smi

3. Generate Conformers We will used the open-source RDKit library to generate 3D confor-
mations from the 2D SMILES.

(a) Having installed RDKit and placed it in your PYTHONPATH, download and make exe-
cutable the rdconf.py python script.
wget http://bits.csb.pitt.edu/ tdtCDPK1 / rdconf .py
chmod +x rdconf .py

(b) Generate a single conformer for each active/decoy.
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rdconf .py --maxconfs 1 decoys .smi decoys .sdf
rdconf .py --maxconfs 1 actives .smi actives .sdf

(c) Create a single combined file of both actives and decoys.
cat actives .sdf decoys .sdf > combined .sdf

1.3 Docking

We will perform virtual screening by docking compounds to a receptor structure using smina [3]
and the AutoDock Vina scoring function [6]. Since we a docking against a fixed receptor, it is
important that we choose a good receptor structure. Here we will use our CDPK1 benchmark to
simultaneously evaluate our docking protocol and choice of receptor structure.

1. Identify all C. parvum and T. gondii structures in the PDB. Search for ‘calcium-dependent
protein kinase 1’ and then narrow the search by the appropriate organism.
C. parvum: 2QG5 2WEI 3DFA 3F3Z 3HKO 3IGO 3L19 3LIJ 3MWU 3NCG
T. gondii: 3I79 3I7B 3I7C 3KU2 3N51 3NYV 3SX9 3SXF 3T3U 3T3V 3UPX 3UPZ 3V51
3V5P 3V5T 4M84

2. Download these structures to pdb files.

3. Align and extract structures. Open all the pdb files of a target in pymol. Align them
(alignto). Remove waters and ions. Extract each ligand into its own object.

4. Save aligned receptor and ligand files. Note that 3LI9 is missing the kinase domain and
2DFA and 2QG5 are unbound structures of C. parvum so we will omit them from further
consideration.
for name in cmd.get_names (): cmd.save(name+".pdb",name)

5. Combine extracted ligands into a single pdb to form a pseudo-molecule that defines the
binding site.
grep -h HETATM obj*pdb > allligs .pdb

6. Dock the benchmark compounds to each receptor structure.1 For example:
smina --seed 0 --autobox _ ligand allligs .pdb -r 2WEI.pdb \

-l combined .sdf -o 2WEI_ docked .sdf.gz

For reproducibility, we specify a random number seed. The bounding box for docking is
specified automatically with the autobox ligand option which creates a box with an 8Å
buffer around the provided ligand. Ligand, receptor, and output files can be specified in any
format supported by OpenBabel [5].

7. Output the scores of the top ranked docked poses of each compound.
1We performed these dockings using hundreds of cores over a period of weeks. Qualitatively similar results can

still be obtained by creating a smaller benchmark by downsampling the number of decoys: sdsorter -randomize
-nbest 200 decoys.sdf decoys small.sdf
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PDB AUC Partial AUC
3I79 0.7768 0.5762
3I7B 0.8129 0.6261
3I7C 0.8678 0.6643
3KU2 0.7111 0.5495
3N51 0.8129 0.6152
3NYV 0.8577 0.6779
3SX9 0.8375 0.6742
3SXF 0.8276 0.6641
3T3U 0.8759 0.7091
3T3V 0.8199 0.6498
3UPX 0.8570 0.6708
3UPZ 0.7544 0.5717
3V51 0.7830 0.5906
3V5P 0.8437 0.6461
3V5T 0.7705 0.5887
4M84 0.8360 0.6268

(a) T. gondii

PDB AUC Partial AUC
2WEI 0.8520 0.6485
3F3Z 0.8042 0.5983
3HKO 0.8048 0.6106
3IGO 0.8349 0.6291
3LIJ 0.7757 0.5993

3MWU 0.8304 0.6300
3NCG 0.8491 0.6552

(b) C. parvum

Figure 4: Docking performance as measured by AUC and a corrected partial AUC that measures perfor-
mance at a 10% false positive rate (early enrichment).

(a) T. gondii (b) C. parvum

Figure 5: Receiver operating characteristic (ROC) curves for docking performance against various CDPK1
structures for each organism.
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sdsorter -sort minimizedAffinity -reduceconfs 1 2WEI_ docked .sdf.gz \
-print -c > 2WEI_ docked .txt

8. Analyze the docking performance using R. We will use receiver operating characteristic (ROC)
curves, which plot the false positive rate versus the true positive rate as the threshold for
acceptance is varied, to assess virtual screening performance. The area under the curve (AUC)
of a ROC curve is a measure of accuracy and is equal to the probability that a randomly
chosen active compound will be ranked higher than a randomly chosen inactive compound.
An AUC of 1.0 is perfect performance, and an AUC of 0.5 is random performance.

(a) Install and load the pROC package into R.

install . packages ("pROC")
library ("pROC")

(b) Load the scores from docking into R and calculate ROC curves.
rarr = list ()
for (file in Sys.glob("* docked .txt")) {

d = read.table (file , header =T)
r = roc(grepl(" active ",d$Title),d$ minimizedAffinity , direction =">")
rarr [[ length (rarr )+1]] = r

}
names (rarr) = Sys.glob("* docked .txt")

(c) Print the area under the curve (AUC) and the corrected partial AUC for a 10% false
positive rate for each structure. The corrected partial AUC gives the area under the
first tenth of the curve and is corrected so that it can be interpreted as a full AUC (e.g.,
0.5 is random performance, 1.0 is perfect performance). This is an unbiased, easy to
interpret measure of early enrichment.
for (n in names (rarr )) {

r = rarr [[n]]
a = auc(r, partial .auc=c(1 ,.9) , partial .auc. correct =T)
s = sprintf ("%s %.4f %.4f\n",sub("_ docked .txt","",n),r$auc [1],a[1])
cat(s)

}

The AUCs against all targets are shown in Figure 4 and the ROC curves are shown in
Figure 5. The best performing T. gondii structure is 3T3U with an AUC of 0.8759 while
the best C. parvum structure is 3NCG with an AUC of 0.8491.

2 E. tenella CDPK1 Model and Test Set Prediction

Here we will create a model of E. tenella for virtual screening and develop a custom scoring function
based on our previous docking results.
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Figure 6: The docked poses of the top ranked compound when ranked with (a) the default scoring function
and with (b) a custom scoring function fit to the data.

2.1 Modeling

Based on the results of the previous section, T. gondii is closest to E. tenella in overall sequence
and in binding site sequence. 3T3U is the T. gondii structure that exhibits the best docking
performance both in terms of overall performance (AUC) and early enrichment (partial AUC).
Therefore we create our model, swissmodel3T3U.pdb, using SWISS-Model as in Section 1.1.2.

2.2 Docking of Test Set

Here we dock the provided test set of 22 compounds to our model.

1. Convert to SMILES
awk 'NR > 1 {print $2,$1}' tdt2 -challenge3 -cdpk1_ externaltestset .txt \

> testset .smi

2. Generate conformers
rdconf .py --maxconfs 1 testset .smi testset .sdf

3. Dock the test set
smina --autobox _ ligand allligs .pdb -r swissmodel3T3U .pdb \

-l ../ testset .sdf -o testset _ docked .sdf --seed 0

4. Select and sort the best ranked poses
sdsorter -sort minimizedAffinity testset _ docked .sdf -reduceconfs 1 \

testset _ docked _best.sdf -print -c > testset _ default _ ranking .txt

The pose of the top ranked compound is shown in Figure 6(a).
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-0.681459 repulsion(o=0,_c=8)
0.079594 hydrophobic(g=0.5,_b=1.5,_c=8)
-0.073039 non_hydrophobic(g=0.5,_b=1.5,_c=8)
-0.060572 vdw(i=6,_j=12,_s=1,_ˆ=100,_c=8)
0.253043 non_dir_h_bond_lj(o=-0.7,_ˆ=100,_c=8)
2.935961 non_dir_h_bond(g=-0.7,_b=0,_c=8)
-3.472105 acceptor_acceptor_quadratic(o=0,_c=8)
-0.021506 gauss(o=3,_w=2,_c=8)
0.141127 ad4_solvation(d-sigma=3.6,_s/q=0.01097,_c=8)

Figure 7: The terms and weights determined by fitting to the docked poses of the T. gondii benchmark
with logistical regression and backward variable selection.

-1.214001 repulsion.o.0._c.8.
3.357897 hydrophobic.g.0.5._b.1.5._c.8.
-3.472107 non_hydrophobic.g.0.5._b.1.5._c.8.
32.238475 vdw.i.6._j.12._s.1._..100._c.8.
-2.465104 non_dir_h_bond_lj.o..0.7._..100._c.8.
3.523563 non_dir_h_bond.g..0.7._b.0._c.8.
-0.573025 acceptor_acceptor_quadratic.o.0._c.8.
-29.073479 gauss.o.3._w.2._c.8.
1.439289 ad4_solvation.d.sigma.3.6._s.q.0.01097._c.8.

Figure 8: The average values of each term across the full benchmark after applying the weights of Figure 7.

2.3 Custom scoring with smina

Here we will develop a custom scoring function that is parametrized using the T. gondii benchmark.
In addition to the default scoring, we will score the held out test with this custom scoring function.

1. Create an custom scoring function with all the conformation dependent terms available in
smina, omitting the atom-type terms (which would result in a huge number of terms if all
possible atom type combinations were considered). Also include the second Gaussian term
that is present in the default scoring function. Assign each term a weight of 1.0.
smina --print _terms | \

grep -v -E 'atom_type| constant |num_| ligand _length ' > allterms
echo "gauss(o=3,_w=2,_c=8)" >> allterms
sed -i 's/ˆ/1.0 /' allterms

2. Score the top ranked conformations from docking the T. gondii benchmark against 3T3U.
sdsorter -sort minimizedAffinity -reduceconfs 1 \

3T3U_ docked .sdf.gz 3T3U_ docked _ single .sdf.gz
smina --custom _ scoring allterms --score_only \

-l 3T3U_ docked _ single .sdf.gz -r 3T3U.pdb | \
grep "##" | sed "s/##//" | \
awk '{print $1 ˜ / active /,$0}' > allscores

3. Use the rms package of R and logistical regression with backward variable selection to fit
these scores to the activity data. In the interest of limiting over-fitting to the data, select
only those features with a low p-value (< .0001).
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(a)

Default FitScore
FitScore
Select

AUC 0.876 0.920 0.933
pAUC10 0.709 0.826 0.816

(b)

(c)

Default FitScore
FitScore
Select

AUC 0.849 0.793 0.802
pAUC10 0.655 0.611 0.607

(d)

Figure 9: Performance of the scoring function fit to the T. gondii benchmark docking data. (a) ROC
curves and (b) AUC values when evaluated on the T. gondii benchmark. As expected, since the scoring
function was parametrized using this data, performance improves. When applied to C. parvum, however, the
(c) curves and (d) AUCs are not as good for the fit scoring function, suggesting that this scoring function
may not generalize well. FitScore Select evaluates the case where the scoring function was used to select
the docked pose while FitScore simply re-ranks the poses selected with the default scoring function. In all
cases the docked poses were generated using the default scoring function, since the fit scoring function is not
parametrized for docking.

install . packages ("rms")
library (rms)
scores = read.table (" allscores ",header =T)[c( -2)] # remove Name column
colnames ( scores )[1] = " activity "
formula = reformulate (names ( scores )[c(-1)], response =" activity ")
fit = lrm(formula ,data=scores ,x=T,y=T)
fit2 = fastbw (fit ,rule="p",sls =0.0001)
for(n in names (fit2$ coefficients )) {

cat( sprintf ("%f %s\n",fit2$ coefficients [[n]],n))
}

4. Save the determined coefficients to create a new scoring function. Because the term names
include characters that are not valid in R names, it is necessary to edit the input to restore
the proper terms, resulting in the scoring function shown in Figure 7.
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5. Create an average estimate of the contribution of each of the terms in this scoring function
by multipling the coefficiencts by the average value of each term.
aves = apply ( scores [ names (coef(fit2 ))[ -1]] ,2 , mean)*coef(fit2 )[ -1]
for(n in names (aves) ) {

cat( sprintf ("%f %s\n",aves [[n]],n))
}

The resulting averages are shown in Figure 8 and generally conform to expectations. Favorable
interactions (hydrophobic, VDW, hydrogen bonds, and solvation) have positive coefficients
while unfavorable interactions (non-hydrophobic, repulsion, and acceptor-acceptor) have neg-
ative coefficients. Both the steric terms (VDW vs gauss) and the hydrogen bonding terms
(linear h-bond vs Lennard Jones h-bond) display some compensation where two terms that
measure the same interaction in different ways adopt opposite coefficients to define a new
functional.

6. Evaluate this new scoring function. In addition to rescoring the top ranked docked poses,
use this new scoring function, fitscore, to rescore and re-rank all the docked poses. Note
that this scoring function predicts activity rather than affinity. Larger, more positive values
indicate compounds that are more likely to be active so compounds need to be sorted in
reverse numerical order before choosing the best conformation.
smina --score _only -r 3T3U.pdb -l 3T3U_ docked _ single .sdf.gz \

--custom _ scoring fitscore -o 3T3U_ docked _ single _ rescore .sdf.gz
sdsorter -print -c 3T3U_ docked _ single _ rescore .sdf.gz \

> 3T3U_ docked _ single _ rescore .txt
smina --score _only -r 3T3U.pdb -l 3T3U_ docked .sdf.gz \

--custom _ scoring fitscore -o 3T3U_ docked _ rescore .sdf.gz
sdsorter -reversesort minimizedAffinity -reduceconfs 1 -print -c \

3T3U_ docked _ rescore .sdf.gz > 3T3U_ docked _ rescore .txt

rescore = read.table ("3T3U_ docked _ single _ rescore .txt",header =T)
rescoreROC = roc(grepl(" active ",rescore $ Title),

rescore $ minimizedAffinity , direction ="<")
rescore2 = read.table ("3T3U_ docked _ rescore .txt",header =T)
rescore2ROC = roc(grepl(" active ",rescore2 $ Title),

rescore2 $ minimizedAffinity , direction ="<")

The resulting ROC curves and AUCs are shown in Figure 9. Unsurprisingly, the new scoring
function does significantly better when applied to the data it was parametrized on. When
applied to the C. parvum benchmark (Figure 9), the new scoring function does not perform
as well, suggesting it may not generalize to other receptors or even other chemotypes outside
of the benchmark data. However, there is a high degree of similarity between T. gondii and
E. tenella, and our E. tenella model is based off of the 3T3U structure that was used to
parametrize the scoring function. Consequently, it may produce superior performance to the
default scoring function when screening against our E. tenella model.

7. Score the held out test set with the new scoring function.
smina --custom _ scoring fitscore --score_only -l testset _ docked .sdf \

-r swissmodel3T3U .pdb -o testset _ rescored .sdf
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sdsorter -print -c testset _ rescored .sdf -reversesort minimizedAffinity \
-reduceconfs 1 testset _ rescored _best.sdf \
> testset _ custom _ ranking .txt

The pose of the top ranked compound using this scoring function is shown in Figure 6(b).

The files testset custom ranking.txt and testset default ranking.txt are provided at
http://bits.csb.pitt.edu/tdtCDPK1 and contain the predicted rank order of the compounds in
the held out test set. The scoring function that performs better on this test set should be used to
select compounds from the full virtual screening.

3 Virtual Screening

Having demonstrated that docking can be successfully applied to these targets and crafted a custom
scoring function tuned to the specific structure our E. tenella model is created from, we are ready
to screen the eMolecules compound library. Note that our custom scoring function should not be
used for docking, as it was parametrized to predict activity from static poses. Consistent with how
the scoring function was trained, we will generate all poses using the default scoring function. To
achieve this in a reasonable amount of time a large cluster of compute nodes is required.

1. Download eMolecules library.
wget http:// downloads . emolecules .com/ ordersc /2014 -01 -01/ parent .smi.gz
gunzip parent .smi.gz

2. Split into appropriately sized pieces for the distributed environment. For example, to split
into 10000 chunks:
split -n l/10000 parent .smi -d -a 4 split _
for i in split *; do mv $i ${i}. smi; done

3. Generate conformers for each piece.
rdconf .py --maxconfs 1 split_0000. smi split _0000. sdf.gz

4. Dock each piece.
smina --autobox _ ligand allligs .pdb -r swissmodel3T3U .pdb \

-l split_ 0000. sdf.gz -o docked _0000. sdf.gz --seed 0

5. Get the top poses from each piece using both default scoring and custom scoring.
sdsorter -sort minimizedAffinity -reduceconfs 1 -nbest 100 \

docked _0000. sdf.gz best_ default _ 0000. sdf.gz
smina --custom _ scoring fitscore --score_only -l docked _ 0000. sdf.gz \

-r swissmodel3T3U .pdb -o rescored _ 0000. sdf.gz
sdsorter -reversesort minimizedAffinity -reduceconfs 1 -nbest 100 \

rescored _ 0000. sdf.gz best_ custom _0000. sdf.gz

6. Combine top poses into one file and rank.
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zcat best_ default _*.sdf.gz | gzip > best_ default .sdf.gz
zcat best_ custom _*.sdf.gz | gzip > best_ custom .sdf.gz
sdsorter -sort minimizedAffinity best_ default .sdf.gz \

-nbest 1000 top1000 _ default .sdf.gz -print -c \
> top1000 _ default .txt

sdsorter -reversesort minimizedAffinity best_ custom .sdf.gz \
-nbest 1000 top1000 _ custom .sdf.gz -print -c \
> top1000 _ custom .txt

The ranking (.txt) and structure files (.sdf) of the top 1000 hits from virtual screening are
provided at http://bits.csb.pitt.edu/tdtCDPK1/.2
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