

Computational Drug Discovery

David Ryan Koes 4/10/2018

http://bits.csb.pitt.edu

What is a drug?

According to the Food, Drug, and Cosmetic Act (1): a substance recognized in an official pharmacopoeia or formulary (2): a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3): a **substance** other than food **intended to affect the structure or function** of the body (4): a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device http://www.merriam-webster.com/dictionary/drug

What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance recognized in an official pharmacopoeia or formulary (2) : a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3) : a substance other than food **intended to affect the structure or function** of the body (4) : a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the structure/function of macromolecules

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

- 1. Does the compound do what you want it to?
- Does the compound **not** do what you **don't** want it to?
- 3. Is what you want it to do the right thing?

Drug Discovery

Computational Drug Discovery

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score
- simulation

ADMET

Absorption Distribution Metabolism Excretion Toxicity

Will this be a usable drug?

Screening for ADMET:

Cytochrome P450 interaction Lipinksi's Rule of Five QSPR: Quantitative Structure Property Relationship

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore
- **Receptor Based**
 - dock and score

Ligand Based: Similarity

Fingerprint Methods

- map molecules to a descriptor space:

1D: molecule weight, #h-bonds, etc. 2D: paths, bond distances between atom-pairs

- similarity is "distance" between descriptors
- for bit vectors, Tanimoto distance used

$$T(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Topological Fingerprints

ECFP4

- all substructures with diameter 4 around every atom

Ligand Based: Similarity

Superposition Methods

- compute "overlap" between molecules
- consider shape, electrostatics, **pharmacophores**

Ligand Based: QSAR

Quantitative Structure/Activity Relationships

	Cmpd Number	Cmpd Name	X	Log EC₅₀	п	Calculated Log EC₅₀	Residual
	1	6a	Н	1.07	0	0.79	0.28
	2	6b	Cl	0.09	0.71	0.21	-0.12
	3	6d	NO ₂	0.66	-0.28	1.02	-0.36
•	4	6e	CN	1.42	-0.57	1.26	0.16
	5	6f	C_6H_5	-0.62	1.96	-0.81	0.19
	6	6g	N(CH ₃) ₂	0.64	0.18	0.65	-0.01
	7	6h	I	-0.46	1.12	-0.12	-0.34

Properties

Biological Activity = Learned linear function of properties 3D-QSAR: includes geometric/structural properties

Ligand/Receptor Based: Pharmacophore

Pharmacophore:

IUPAC: The ensemble of steric and electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

Common Features:

aromatic ring hydrophobic area positive ionizable negative ionizable hydrogen bond donor hydrogen bond acceptor

Pharmacophore Features

Charge-Charge

Charge-Charge

Inhibitor of the influenza virus neuraminidase (antiviral agent)

Distance: D-A: $2.5\text{\AA} - 3.5\text{\AA} (4.0\text{\AA}?)$ H-A: $1.5\text{\AA} - 2.5\text{\AA}$ Angle: Depends on context

Turkey Ovomucoid Inhibitor

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

Aromatic

Aromatic

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch11/benzene-mo.jpg

Aromatic

Rings offset Interplanar distance: 3.3-3.8Å

Human liver glycogen phosphorylase a complexed with caffeine

University of Pittsburgh

Computational and Systems Biology

http://pharmit.csb.pitt.edu
Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score

Pharmacophores Aren't Enough

n.i.

Pharmacophores Aren't Enough

.2µM

50µM

Docking

Determine the **conformation** and **pose** of a ligand at a docking site

Challenge is to find conformation and pose with the best **score**

Two Phase Docking

1. Global Pose Estimation

2. Local Refinement

Two Phase Docking

1. Global Pose Estimation

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Speed

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Speed

Approximations:

Rigid or semi-rigid receptor Implicit water model

Scoring Types

Force-field based

inter- and intra- molecular forces van der Waals, electrostatic, torsional

Empirical

parameterized function is fit to binding energy data

Knowledge based

scoring function based on data, not physical principles

Consensus

combine multiple scoring functions

Force Field: Dock 4.0

Coulomb's Law q: partial charges D: dielectrict constant

Empirical: AutoDock Vina

Weight	Term
-0.0356	gauss ₁
-0.00516	gauss ₂
0.840	Repulsion
-0.0351	Hydrophobic
-0.587	Hydrogen bonding
0.0585	N _{rot}

Knowledge Based: RF-Score

Pairwise Distance Counts (<12Å)

Protein

BIOINFORMATICS

ORIGINAL PAPER Vol. 25 10. popus 1160 1175 doi:10.1033/tool.doi.org/10.1011/10.

Structural bioinformatics

Advance Access publication March 17, 2012

A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking

Pedro J. Ballester^{1,+,†} and John B. O. Mitchel^{2,+}

¹Uniseer Centre for Molecular Science Informatics, Department of Cremistry, University of Cembridge, Lensfeld, Bood, Cembridge CB2 1PW and ²Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, KY18 6ST, UK Associate Sciences Past

36

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

- **Key Idea:** Leverage "big data" 231,655,275 bioactivities in PubChem 125,526 structures in the PDB
 - 16,179 annotated complexes in PDBbind

Machine Learning

Features $X \rightarrow Model \rightarrow y$ Prediction

Neural Networks

Neural Networks

The universal approximation theorem

states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

Deep Learning

Image Recognition

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

(R,G,B) pixel \rightarrow (Carbon, Nitrogen, Oxygen,...) **voxe** The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Model

Results

Affinity Prediction

Pose Prediction

Trained on PDBbind refined; tested on CSAR 🧐

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://deepdreamgenerator.com/#gallery

Key Concepts

Ligand-Based Virtual Screening

Identifying new active compounds based on similarity to known active compounds; fingerprint is a bit vector representation of a molecule

Pharmacophore

A spatial arrangement of molecular features essential for biological activity - hydrogen bonding, hydrophobic, charged, etc.

Docking

Predict the position, pose and affinity of a molecule using the receptor structure

Scoring force field ... empirical ... knowledge based

Questions

- Developing a new drug costs on the order of a) 1 million b) 10 million c) 100 million d) 1 billion
- What does ADMET stand for?
- True or False. If two molecules have the same fingerprint, then they are the same.
- True or False. If two molecules are the same, they have the same fingerprint.
- Name three examples of pharmacophore features.
- True or False. Similarity search requires a receptor structure.
- True or False. Docking requires a receptor structure.
- A CNN-based scoring function is
- a) physics-based b) empirical c) knowledge-based

Acknowledgements

Matt Ragoza

Josh Hochuli

Lily Turner

Jocelyn Sunseri

Department of Computational and Systems Biology

2

Group Members

Jocelyn Sunseri Jonathan King Paul Francoeur Matt Ragoza Josh Hochuli Pulkit Mittal Sharanya Bandla Faiha Khan Lily Turner Dale Erikson Amrita Nallathambi Alec Helbling **Gibran Biswas**

