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What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance
recognized in an official pharmacopoeia or formulary (2) : a
substance intended for use in the diagnosis, cure, mitigation,
treatment, or prevention of disease (3) : a substance other than
food intended to affect the structure or function of the body
(4) : a substance intended for use as a component of a medicine
but not a device or a component, part, or accessory of a device

http://www.merriam-webster.com/dictionary/drug
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What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance
recognized in an official pharmacopoeia or formulary (2) : a
substance intended for use in the diagnosis, cure, mitigation,
treatment, or prevention of disease (3) : a substance other than
food intended to affect the structure or function of the body
(4) : a substance intended for use as a component of a medicine
but not a device or a component, part, or accessory of a device

http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the
structure/function of macromolecules
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THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

POST-APPROVAL
BASIC DRUG PRE- FDA
RESEARCH | DISCOVERY  CLINICAL CLINICAL TRIALS REVIEW

RESEARCH &
MONITORING

PHASE | PHASE I PHASE I PHASE IV

1 FDA-
APPROVED
MEDICINE

POTENTIAL NEW MEDICINES

$2.6
BILLION

NUMBER OF VOLUNTEERS
HUNDREDS THOUSANDS

NDA/BLA SUBMITTED

IND SUBMITTED
FDA APPROVAL

Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)
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THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS
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Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)
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1. Does the compound do what you want it to”

2. Does the compound not do what you don’t
want it to”?

3. Is what you want it to do the right thing”
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Drug Discovery

B
Ouniics

Target . Lead Lead

|dentification Screening |dentification Optimization
. Clinical
R
Compounds Hits Leads Candidates
Cost
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Computational Drug Discovery

Virtual Modeling
Omiles | =3 S
Target | Lead Lead
|dentification Screening |dentification Optimization
Compounds Hits Leads —Ceﬁ\l::lr;ldcailes
Cost
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score
- simulation
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ADMET

Absorption
Distribution
Metabolism
Excretion
Toxicity

Computational and Systems Biology

Will this be a usable drug?

Screening for ADMET:
Cytochrome P450 interaction
Lipinksi’s Rule of Five

QSPR: Quantitative Structure
Property Relationship
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder

- QSAR

- pharmacophore

Receptor Based
- dock and score
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Ligand Based: Similarity
Fingerprint Methods

7

- map molecules to a descriptor space: AN\

S55))
7

1D: molecule weight, #h-bonds, etc.
2D: paths, bond distances between atom-pairs

2% //_‘-/,

- similarity is “distance” between descriptors
- for bit vectors, Tanimoto distance used

A(B
AUB

T(A,B) =

11
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Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

O=C-N-C

) 0=N-0
O=C-O_, \ | N-c-c-c-c-c=0

fingerprint:

C-C=C-C

12
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Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

O=C-N-C

) 0=N-0
O=C-O_, \ | N-c-c-c-c-c=0

0y

C-C=C-C
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Topological Fingerprints
ECFP4

- all substructures with diameter 4 around every atom

13
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Ligand Based: Similarity
Superposition Methods

- compute “overlap” between molecules

- consider shape, electrostatics, pharmacophores

http://www.cresset-group.com/
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships

Properties

Calculated

CEHEITEL

Number Log ECso
H 1.07 0 0.79 0.28
(7p)
®) Cl 0.09 0.71 0.21 -0.12
-
S NO, 0.66 -0.28 1.02 -0.36
@)
% CN 1.42 -0.57 1.26 0.16
o CeHs -0.62 1.96 -0.81 0.19
O N(CHs) 0.64 0.18 0.65 -0.01
I -0.46 1.12 -0.12 -0.34

Biological Activity = Learned lrear function of properties

3D-QSAR: includes geometric/structural properties

15
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships
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Ligand/Receptor Based: Pharmacophore

Pharmacophore:

JUPAC: The ensemble of steric and electronic features that is
necessary to ensure the optimal supra-molecular
interactions with a specific biological target structure and to
trigger (or to block) its biological response.

Common Features:
aromatic ring
hydrophobic area
positive ionizable
negative ionizable
hydrogen bond donor
hydrogen bond acceptor
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Pharmacophore Features

_ |

S
drogen Acceptor

Yy drogENIYOND;
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Charge-Charge

IFo.ol =1Fqol= k 2

19
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Charge-Charge

Salt Bridge

Inhibitor of the influenza virus neuraminidase (antiviral agent)
20
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Hydrogen Bond

21
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Hydrogen Bond

21
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Hydrogen Bond

21
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Hydrogen Bond

21
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Hydrogen Bond

Distance:

D-A: 2.5A — 3.5A (4.0A?)
H-A: 1.5A — 2.5A

Angle:

Depends on context

Turkey Ovomucoid Inhibitor

22
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Hydrophobic

23
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Hydrophobic

MDMZ2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome) 24
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MDMZ2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome) 24
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Aromatic

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch11/benzene-mo.jpg 25
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Aromatic
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Aromatic

Rings offset
Interplanar distance: 3.3-3.8A
e A

Human liver glycogen phosphorylase a complexed with caffeine

26
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder
- QSAR

- pharmacophore

Receptor Based
- dock and score

28
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Pharmacophores Aren’'t Enough

. . .
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Pharmacophores Aren’'t Enough
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Docking

Determine the conformation and pose of a
ligand at a docking site

Challenge is to find
conformation and pose with
the best score

30
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Two Phase Docking

1. Global Pose Estimation 2. Local Refinement

g
/

Stochastic Minimization

31
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Two Phase Docking
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Scoring Goals
Affinity Prediction

-how well does it bind?

»
4

Inactive/Active Discrimination
-does it bind?

Pose Prediction

-how does it bind?

32
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Scoring Goals
Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination
-does it bind?

Pose Prediction

-how does it bind?

Speed

32
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Scoring Goals
Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination
-does it bind?

Pose Prediction

-how does it bind?

Approximations:
Spé@d Rigid or semi-rigid receptor
Implicit water model

32
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Scoring Types
Force-field based

inter- and intra- molecular forces
van der Waals, electrostatic, torsional

Empirical
parameterized function is fit to binding energy data

Knowledge based

scoring function based on data, not physical principles

Consensus

combine multiple scoring functions

33
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Force Field: Dock 4.0 Coulomb’s Law
g: partial charges
D: dielectrict constant
lig rec
Bj; qi9;
= 3 3 (-
: b Dr ij
I=1)=1 I ij
van der Waals
s a=12,b=6
w0 | | Lennard-Jones potential
0 40 50 et 6.0 7.0 8.0

34
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Empirical: AutoDock Vina

Weight Term
. —(d/0.5)2 —0.0356 Lauss,
( o wguassl € —0.00516 Causs,
—((d—3)/2)2 0.810 Repulsion
( =  Wguass, € ((d=3)/2) 0.0351 [Tvdrophobic
d2 d 0 1.587 Hvdrogen bonding
: Wrenulsi < 00385 Nt
repulsion(d) = { r°pu61°n 7> 0
0.1
0.05 |
.
whydrophobic d<0.5 0
hydrophobic(d) = 0 d>1.5 E o /
. 3 005
| Whydrophobic (1.5 — d)  otherwise £ |
0.15 , SIONC e
steric + hydrophobic
steric + H-bond
( Whbond d < —0.7 el
hbond(d) = A 0 d>0 0.25 : : : . : :
10 . . 0 1 2 3 4 5 8
| Whbond(—+d) otherwise Surtace distance (A)
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Knowledge Based: RF-Score

Pairwise Distance Counts (<12A) Protein

C N O S

Ligand

b,

i ORIGINAL PAPER " lal] iy S i dfhdy v b
SUucinal biownfarnatics AN S SO0 ML 1. UL R d : & F . t j: | ‘ 4
A machine learning approach to predicting protein-ligand binding 3 an o m <& o res #O iy Saddd iy

affinity with applications to molkecular docking
Pecrs J, Dallester’* © ard John B, C, Mitcnel ™ *

36
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Can we do better?

Accurate pose prediction, binding
discrimination, and affinity prediction without
sacrificing performance?
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Can we do better?

Accurate pose prediction, binding

discrimination, and affinity prediction without
sacrificing performance?

Key Idea: Leverage "big data”
231,655,275 bioactivities in PubChem

125 526 structures in the PDB
16,179 annotated complexes in PDBbina
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Machine Learning

—eatures X —

— Y Prediction
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Neural Networks

X,

x> outpul

output = o Zw x; + b

?

Istep sigmoi Rel U
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Neural Networks
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The universal approximation theorem
states that, under reasonable assumptions, a
feedforward neural network with a finite
number of nodes can approximate any
continuous function to within a given error
over a bounded input domain.
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Deep Learning

/)

g L L

A R RNVt A A T ALLSYSTEMS L

>
N

\ L MR O M)

‘\"9 v‘/‘}}‘)\s @;I’!"})‘)‘g%lg V% 4'! VA, VA, M ' X i
. SN O ) H R R T .
R Res il Ll SO S fme S SRR TR
WK O WO O WO ) -
AR A 6‘?’%‘ W3 'ﬂ‘?"/v‘ QP& (‘W»‘ P—EXY Y :

‘,&:@ 2@ é@;g«'}vé 9 _

)V DORINCX QORI WA

AR "?XO"%“ ';5’?,}%’\”‘ o "‘”::.’0“/ X

SN LORAAKS OALKS N
RO BRI RONOE™ )RR KK
';:é‘\\K @Y,
ZXN
IO RS T
'S \9 0 0%6
\w/

ROK RUERDE K N W,
R R
oW "41,’0'\3 yM’/{')‘“ //"\
LN\ \“\




University of Pittsburgh Computational and Systems Biology

Deep Learning
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Image Recognition

airplane

oo 2 2 2

bird
cat
deer
dog
frog
horse
ship

truck

=B ~ BT -

Computational and Systems Biology

ILSVRC top-5 error on ImageNet

Sma B WE
ol el el
..R& Convolutional Neural Networks
AE~nD
S s
B EEEO
= T

2010 2011 2012 2013 2014 Human  ArXiv 2015

3 https://devblogs.nvidia.com
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Convolutional Neural Networks

=

Convolution
N Feature Maps

Convolution

— weight 1
—  Weight 2
—— Weight 3

&

Convolution Fully Connected

Feature Maps Traditional NN

Fully-connected

O

Cat:

weight 1
weight 2
weight 3
weight 4
weight 5
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CNNs for Protein-Ligand Scoring

Pose Prediction

y A\ N g
‘// N &\ : :
> ¥ | Bmd_mg_
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Affinity Prediction
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Protein-Ligand Representation

(R,G,B) pixel
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Protein-Ligand Representation

(R,G,B) pixel —
(Carbon, Nitrogen, Oxygen,...) voxe

The only parameters for
this representation are the
choice of grid resolution,
atom density, and atom
types.
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Model

Affinity

Pose
Score
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Prediction

Results

15

12

Affinity Prediction

/

o CNN (R=0.74, RMSE=1.44)
Vina (R=0.55, RMSE=1.80)

3 6 9
Experiment

12

15

Computational and Systems Biology

Pose Prediction

TPR

0.2 —— CNN (AUC=0.89)
— \/ina (AUC=0.61)
0.0
00 02 04 06 08 10

FPR

Trained on PDBbind refined; tested on CSAR @
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Beyond Scoring
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Beyond Scoring

. Ny ] : unit3 convl output_fc
unitl pool _p(@l : \ )@t&j(%ﬂ)—) 198 % 63 —> p2 -
—BL — ai;l& and —BI; — 5;.
label Bl i
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Beyond Scoring

unit3_convl output_fc
128 x 6"3 2
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Beyond Scoring
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https://deepdreamgenerator.com/#gallery
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Beyond Scoring

Sfss x¥n— Here
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Beyond Scoring
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Key Concepts

Ligand-Based Virtual Screening
ldentifying new active compounds based on similarity to known active
compounds; fingerprint is a bit vector representation of a molecule

Pharmacophore
A spatial arrangement of molecular features essential for biological
activity - hydrogen bonding, hydrophobic, charged, etc.

Docking
Predict the position, pose and affinity of a molecule using the receptor
structure

Scoring
force field ... empirical ... knowledge based

52
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Questions

Developing a new drug costs on the order of
a) 1 million b) 10 million ¢) 100 million d) 1 billion

What does ADMET stand for?

rue or False. If two molecules have the same fingerprint, then they are the same.

rue or False. If two molecules are the same, they have the same fingerprint.
Name three examples of pharmacophore features.

True or False. Similarity search requires a receptor structure.

True or False. Docking requires a receptor structure.

A CNN-based scoring function is
a) physics-based b) empirical c) knowledge-based
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Q@david_koes
() github.com/gnina
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