Computational Drug Discovery

David Ryan Koes

4/10/2018

http://bits.csb.pitt.edu
What is a drug?

According to the Food, Drug, and Cosmetic Act (1): a substance recognized in an official pharmacopoeia or formulary (2): a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3): a substance other than food intended to affect the structure or function of the body (4): a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device

http://www.merriam-webster.com/dictionary/drug
What is a drug?

According to the Food, Drug, and Cosmetic Act (1): a substance recognized in an official pharmacopoeia or formulary (2): a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3): a substance other than food intended to affect the structure or function of the body (4): a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device

http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the structure/function of macromolecules
COX-1
THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)
THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

POTENTIAL NEW MEDICINES

IND SUBMITTED

TENS

HUNDREDS

THOUSANDS

NUMBER OF VOLUNTEERS

PHASE I

PHASE II

PHASE III

PHASE IV

FDA REVIEW

FDA APPROVAL

POST-APPROVAL RESEARCH & MONITORING

1 FDA-APPROVED MEDICINE

$2.6 BILLION

Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)
1. Does the compound do what you want it to?
2. Does the compound not do what you don’t want it to?
3. Is what you want it to do the right thing?
Drug Discovery

Omics

Target Identification

Screening

Lead Identification

Lead Optimization

Compounds

Hits

Leads

Clinical Candidates

Cost
Computational Drug Discovery

Omics
- Target Identification

Virtual
- Screening
- Lead Identification

Modeling
- Lead Optimization

Compounds
- Hits
- Leads
- Clinical Candidates

Cost
Kinds of Virtual Screening

ADMET

Ligand Based
- similarity to known binder
- QSAR
- pharmacophore

Receptor Based
- dock and score
- simulation
ADMET

Absorption
Distribution
Metabolism
Excretion
Toxicity

Will this be a usable drug?

Screening for ADMET:
- Cytochrome P450 interaction
- Lipinski’s Rule of Five
- QSPR: Quantitative Structure Property Relationship
Kinds of Virtual Screening

ADMET

Ligand Based
- similarity to known binder
- QSAR
- pharmacophore

Receptor Based
- dock and score
Ligand Based: Similarity

Fingerprint Methods

- map molecules to a descriptor space:
 1D: molecule weight, #h-bonds, etc.
 2D: paths, bond distances between atom-pairs

- similarity is “distance” between descriptors
- for bit vectors, Tanimoto distance used

\[T(A, B) = \frac{|A \cap B|}{|A \cup B|} \]
Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

O=C-N-C

O=C-O

O=N-O

N-C-C-C-C-C=0

C-C=C-C

fingerprint:
Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (**hashing**)
- fast similarity checking (Tanimoto)
Topological Fingerprints

ECFP4

- all substructures with diameter 4 around every atom
Ligand Based: Similarity

Superposition Methods

- compute “overlap” between molecules
- consider shape, electrostatics, pharmacophores

http://www.cresset-group.com/
Ligand Based: QSAR

Quantitative Structure/Activity Relationships

Properties

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Cmpd</th>
<th>Compd Name</th>
<th>X</th>
<th>Log EC₅₀</th>
<th>n</th>
<th>Calculated Log EC₅₀</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a</td>
<td></td>
<td>H</td>
<td>1.07</td>
<td>0</td>
<td>0.79</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>6b</td>
<td></td>
<td>Cl</td>
<td>0.09</td>
<td>0.71</td>
<td>0.21</td>
<td>-0.12</td>
</tr>
<tr>
<td>3</td>
<td>6d</td>
<td></td>
<td>NO₂</td>
<td>0.66</td>
<td>-0.28</td>
<td>1.02</td>
<td>-0.36</td>
</tr>
<tr>
<td>4</td>
<td>6e</td>
<td></td>
<td>CN</td>
<td>1.42</td>
<td>-0.57</td>
<td>1.26</td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td>6f</td>
<td></td>
<td>C₆H₅</td>
<td>-0.62</td>
<td>1.96</td>
<td>-0.81</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>6g</td>
<td></td>
<td>N(CH₃)₂</td>
<td>0.64</td>
<td>0.18</td>
<td>0.65</td>
<td>-0.01</td>
</tr>
<tr>
<td>7</td>
<td>6h</td>
<td></td>
<td>I</td>
<td>-0.46</td>
<td>1.12</td>
<td>-0.12</td>
<td>-0.34</td>
</tr>
</tbody>
</table>

Biological Activity = Learned linear function of properties

3D-QSAR: includes geometric/structural properties
Ligand Based: QSAR

Quantitative Structure/Activity Relationships

Regression model used to estimate relationship between variables

Model identifies relationship between 2D chemical structures and bioactivity

\[f(\vec{x}) = w_1 \vec{x}_1 + w_2 \vec{x}_2 + w_3 \vec{x}_3 + \ldots + b \]

The vectors correspond to the bits.

Weights are assigned based on prevalence of substructures.

A relationship between vectors, or substructures, and affinity can be estimated.

Karla Robles, Jerry Madura, David Koes

University of Pittsburgh, Duquesne University

QSAR Modeling: Predicting Ligand Binding Affinities and Substructures Key in Binding to SERT

Identifying Selectivity from Substructures

ki unique SERT - 8.13
all SERT - 9.65
ki SERT - 9.69
ki no SSRIS DAT - 5.83
all DAT - 6.19
ki DAT - 6.21

Karla Robles, Jerry Madura, David Koes

University of Pittsburgh, Duquesne University

QSAR Modeling: Predicting Ligand Binding Affinities and Substructures Key in Binding to SERT
Ligand/Receptor Based: Pharmacophore

Pharmacophore:

IUPAC: The ensemble of steric and electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

Common Features:
aromatic ring
hydrophobic area
positive ionizable
negative ionizable
hydrogen bond donor
hydrogen bond acceptor
Pharmacophore Features
Charge-Charge

\[|F_{Q-q}| = |F_{q-Q}| = k \frac{|q| |Q|}{r^2} \]
Charge-Charge

Inhibitor of the influenza virus neuraminidase (antiviral agent)
Hydrogen Bond
Hydrogen Bond
Hydrogen Bond
Hydrogen Bond
Hydrogen Bond

Distance:
D-A: 2.5Å – 3.5Å (4.0Å?)
H-A: 1.5Å – 2.5Å

Angle:
Depends on context

Turkey Ovomucoid Inhibitor
Hydrophobic
Hydrophobic

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)
Hydrophobic

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)
Hydrophobic

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)
Aromatic

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch11/benzene-mo.jpg
Aromatic

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch11/benzene-mo.jpg
Aromatic

Rings offset
Interplanar distance: 3.3-3.8Å

Human liver glycogen phosphorylase a complexed with caffeine
http://pharmit.csb.pitt.edu
Kinds of Virtual Screening

ADMET

Ligand Based
- similarity to known binder
- QSAR
- pharmacophore

Receptor Based
- dock and score
Pharmacophores Aren’t Enough
Pharmacophores Aren’t Enough

0.2µM 50µM n.i.
Docking

Determine the **conformation** and **pose** of a ligand at a docking site

Challenge is to find conformation and pose with the best **score**
Two Phase Docking

1. Global Pose Estimation
 Stochastic

2. Local Refinement
 Minimization
Two Phase Docking

1. Global Pose Estimation

- Stochastic
- Minimization
Scoring Goals

Affinity Prediction
 - how well does it bind?

Inactive/Active Discrimination
 - does it bind?

Pose Prediction
 - how does it bind?
Scoring Goals

Affinity Prediction
- how well does it bind?

Inactive/Active Discrimination
- does it bind?

Pose Prediction
- how does it bind?

Speed
Scoring Goals

Affinity Prediction
 -how well does it bind?

Inactive/Active Discrimination
 -does it bind?

Pose Prediction
 -how does it bind?

Approximations:
Rigid or semi-rigid receptor
Implicit water model
Scoring Types

Force-field based
- inter- and intra- molecular forces
- van der Waals, electrostatic, torsional

Empirical
- parameterized function is fit to binding energy data

Knowledge based
- scoring function based on data, not physical principles

Consensus
- combine multiple scoring functions
Force Field: Dock 4.0

\[E = \sum_{i=1}^{lig} \sum_{j=1}^{rec} \left(\frac{A_{ij}}{r_{ij}^a} - \frac{B_{ij}}{r_{ij}^b} + 332 \frac{q_i q_j}{Dr_{ij}} \right) \]

van der Waals
a = 12, b = 6
Lennard-Jones potential

Coulomb’s Law
q: partial charges
D: dielectric constant
-0.41
0.205
0.205
Empirical: AutoDock Vina

\[\text{gauss}_1(d) = w_{\text{guass}_1} e^{-(d/0.5)^2} \]
\[\text{gauss}_2(d) = w_{\text{guass}_2} e^{-(d-3/2)^2} \]
\[\text{repulsion}(d) = \begin{cases} w_{\text{repulsion}} d^2 & d < 0 \\ 0 & d \geq 0 \end{cases} \]

\[\text{hydrophobic}(d) = \begin{cases} w_{\text{hydrophobic}} & d < 0.5 \\ 0 & d \geq 1.5 \\ w_{\text{hydrophobic}}(1.5 - d) & \text{otherwise} \end{cases} \]

\[\text{hbond}(d) = \begin{cases} w_{\text{hbond}} & d < -0.7 \\ 0 & d > 0 \\ w_{\text{hbond}} \left(-\frac{10}{7} d \right) & \text{otherwise} \end{cases} \]
Knowledge Based: RF-Score

Pairwise Distance Counts (<12Å)

<table>
<thead>
<tr>
<th>Protein</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random Forest
Can we do better?

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?
Can we do better?

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?

Key Idea: Leverage "big data"

- 231,655,275 bioactivities in PubChem
- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind
Machine Learning

Features $X \rightarrow$ Model $\rightarrow y$ Prediction
Neural Networks

\[
output = \sigma \left(\sum_{i} w_i x_i + b \right)
\]
Neural Networks

The universal approximation theorem states that, under reasonable assumptions, a feedforward neural network with a finite number of nodes can approximate any continuous function to within a given error over a bounded input domain.
Deep Learning
Deep Learning

\[\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l) \]

\[\frac{\partial L}{\partial w_{jk}^l} = \alpha_{k}^{l-1} \delta^l_j \text{ and } \frac{\partial L}{\partial b_j^l} = \delta_j^l \]
Image Recognition

ILSVRC top-5 error on ImageNet

Convolutional Neural Networks

https://devblogs.nvidia.com
Convolutional Neural Networks

- Convolution
- Feature Maps
- Fully Connected

Dog: 0.99
Cat: 0.02

Convolutional Neural Networks (CNNs) use convolution operations to extract features from input data, which are then passed through multiple layers of convolution and pooling operations before being fed into a fully connected layer for classification.
CNNs for Protein-Ligand Scoring

- Pose Prediction
- Binding Discrimination
- Affinity Prediction
Protein-Ligand Representation

(R,G,B) pixel
Protein-Ligand Representation

(R,G,B) pixel \rightarrow (\text{Carbon, Nitrogen, Oxygen,} \ldots) \text{ voxel}

The only parameters for this representation are the choice of \textit{grid resolution}, \textit{atom density}, and \textit{atom types}.
Model
Results

Affinity Prediction
- CNN (R=0.74, RMSE=1.44)
- Vina (R=0.55, RMSE=1.86)

Pose Prediction
- CNN (AUC=0.89)
- Vina (AUC=0.61)

Trained on PDBbind refined; tested on CSAR 😐
Beyond Scoring
Beyond Scoring

\[
\frac{\partial L}{\partial w_{jk}^l} = a_{k-1}^l \delta_j^l \quad \text{and} \quad \frac{\partial L}{\partial b_j^l} = \delta_j^l
\]
Beyond Scoring
Beyond Scoring

Deep Dreams

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://deepdreamgenerator.com/#gallery
Beyond Scoring

2Q89

More Oxygen Here

Less Oxygen Here
Beyond Scoring

2Q89

More Oxygen Here

Less Oxygen Here
Key Concepts

Ligand-Based Virtual Screening
Identifying new active compounds based on similarity to known active compounds; fingerprint is a bit vector representation of a molecule

Pharmacophore
A spatial arrangement of molecular features essential for biological activity - hydrogen bonding, hydrophobic, charged, etc.

Docking
Predict the position, pose and affinity of a molecule using the receptor structure

Scoring
force field ... empirical ... knowledge based
Questions

Developing a new drug costs on the order of
a) 1 million b) 10 million c) 100 million d) 1 billion

What does ADMET stand for?

True or False. If two molecules have the same fingerprint, then they are the same.

True or False. If two molecules are the same, they have the same fingerprint.

Name three examples of pharmacophore features.

True or False. Similarity search requires a receptor structure.

True or False. Docking requires a receptor structure.

A CNN-based scoring function is
a) physics-based b) empirical c) knowledge-based
Acknowledgements

Group Members
Jocelyn Sunseri
Jonathan King
Paul Francoeur
Matt Ragoza
Josh Hochuli
Pulkit Mittal
Sharanya Bandla
Faiha Khan
Lily Turner
Dale Erikson
Amrita Nallathambi
Alec Helbling
Gibran Biswas

Department of Computational and Systems Biology

Matt Ragoza Josh Hochuli Lily Turner Jocelyn Sunseri

National Institute of General Medical Sciences
R01GM108340

AI GRANT

NVIDIA

TEC Bio
REU
@david_koes

github.com/gnina

http://bits.csb.pitt.edu