Computational Drug Discovery

David Ryan Koes

11/19/2017

What is a drug?

According to the Food, Drug, and Cosmetic Act (1): a substance recognized in an official pharmacopoeia or formulary (2): a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3): a substance other than food intended to affect the structure or function of the body (4): a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device http://www.merriam-webster.com/dictionary/drug

What is a drug?

According to the Food, Drug, and Cosmetic Act (1): a substance recognized in an official pharmacopoeia or formulary (2): a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3): a substance other than food intended to affect the structure or function of the body (4): a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the structure/function of macromolecules

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

- 1. Does the compound do what you want it to?
- 2. Does the compound **not** do what you **don't** want it to?
- 3. Is what you want it to do the right thing?

Drug Discovery

Screening

Lead Identification

Lead Optimization

Compounds

Hits Leads

Clinical Candidates

Cost

Computational Drug Discovery

Compounds

Hits

Leads

ClinicalCandidates

Cost

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score
- simulation

ADMET

Absorption
Distribution
Metabolism
Excretion
Toxicity

Will this be a usable drug?

Screening for ADMET:

Cytochrome P450 interaction Lipinksi's Rule of Five QSPR: Quantitative Structure Property Relationship

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score

Ligand Based: Similarity

Fingerprint Methods

- map molecules to a descriptor space:

1D: molecule weight, #h-bonds, etc.

2D: paths, bond distances between atom-pairs

- similarity is "distance" between descriptors
- for bit vectors, Tanimoto distance used

$$T(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Ligand Based: Similarity

Superposition Methods

- compute "overlap" between molecules
- consider shape, electrostatics, **pharmacophores**

http://www.cresset-group.com/

Representing Compounds

Conformations

A single compound has many different shapes

Choices: Store sampling of explicit conformations, search for a good conformation, ignore conformations (2D only)

Sombounds

Ligand Based: QSAR

Quantitative Structure/Activity Relationships

Properties

	Cmpd Number	Cmpd Name	X	Log EC ₅₀	П	Calculated Log EC ₅₀	Residual
	1	6a	Н	1.07	0	0.79	0.28
	2	6b	Cl	0.09	0.71	0.21	-0.12
I	3	6d	NO ₂	0.66	-0.28	1.02	-0.36
١	4	6e	CN	1.42	-0.57	1.26	0.16
l	5	6f	C ₆ H ₅	-0.62	1.96	-0.81	0.19
	6	6g	N(CH ₃) ₂	0.64	0.18	0.65	-0.01
	7	6h	I	-0.46	1.12	-0.12	-0.34

Biological Activity = Learned linear function of properties

3D-QSAR: includes geometric/structural properties

Ligand/Receptor Based: Pharmacophore

Pharmacophore:

IUPAC: The ensemble of steric and electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

Common Features:

aromatic ring
hydrophobic area
positive ionizable
negative ionizable
hydrogen bond donor
hydrogen bond acceptor

Pharmacophore Features

Charge-Charge

Charge-Charge

Inhibitor of the influenza virus neuraminidase (antiviral agent)

Distance:

D-A: 2.5Å - 3.5Å (4.0Å?)

H-A: 1.5Å - 2.5Å

Angle:

Depends on context

Hydrophobic

Hydrophobic

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

Aromatic

Aromatic

Aromatic

Rings offset Interplanar distance: 3.3-3.8Å

Human liver glycogen phosphorylase a complexed with caffeine

http://pharmit.csb.pitt.edu

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score

Pharmacophores Aren't Enough

Pharmacophores Aren't Enough

Docking

Determine the **conformation** and **pose** of a ligand at a docking site

Challenge is to find conformation and pose with the best **score**

Two Phase Docking

1. Global Pose Estimation

2. Local Refinement

Minimization

Two Phase Docking

1. Global Pose Estimation

Minimization

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Speed

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Approximations:

Rigid or semi-rigid receptor Implicit water model

Scoring Types

Force-field based

inter- and intra- molecular forces van der Waals, electrostatic, torsional

Empirical

parameterized function is fit to binding energy data

Knowledge based

scoring function based on known structure, not physical principles

Consensus

Force Field: Dock 4.0

Coulomb's Law

q: partial charges

D: dielectrict constant

$$E = \sum_{i=1}^{lig} \sum_{j=1}^{rec} \left(\frac{A_{ij}}{r_{ij}^{a}} - \frac{B_{ij}}{r_{ij}^{b}} + 332 \frac{q_{i}q_{j}}{Dr_{ij}} \right)$$

van der Waals a = 12, b = 6

Lennard-Jones potential

Empirical: AutoDock Vina

Weight	Term
-0.0356	gauss ₁
-0.00516	gauss ₂
0.840	Repulsion
-0.0351	Hydrophobic
-0.587	Hydrogen bonding
0.0585	N _{rot}

$$ext{hydrophobic}(d) = \left\{ egin{array}{ll} w_{ ext{hydrophobic}} & d < 0.5 \\ 0 & d > 1.5 \\ w_{ ext{hydrophobic}}(1.5-d) & otherwise \end{array}
ight.$$

$$ext{hbond}(d) \; = \; \left\{ egin{array}{ll} w_{ ext{hbond}} & d < -0.7 \\ 0 & d > 0 \\ w_{ ext{hbond}}(-rac{10}{7}d) & otherwise \end{array}
ight.$$

Knowledge Based: RF-Score

Pairwise Distance Counts (<12Å)

Protein

Ligand

BIOINFORMATICS ORIGINAL PAPER NA. 35 10 0 22 12, pages 1 100 1 175

Advance Access subleation March 17, 2010

A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking

Pedro J. Ballester^{1,4,†} and John B. C. Mitchel^{2,4}

¹Uniteser Centre for Molecular Sciences Informatics. Department of Coemistry, University of Cembridge, Levelleiti Bood, Cembridge CB2 1FW and ²Centre for Riemalecular Sciences, University of St Andrews, North Haugh, St Andrews KY 8 9ST, UK

Accordate Editor: Blackhard Roet

Structural bioinformatics

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Key Idea: Leverage "big data" 231,655,275 bioactivities in PubCher

125,526 structures in the PDB

16,179 annotated complexes in PDBbind

Machine Learning

Neural Networks

Neural Networks

The universal approximation theorem states that, under reasonable assumptions, a feedforward neural network with a finite number of nodes can approximate any continuous function to within a given error over a bounded input domain.

Deep Learning

Deep Learning

Image Recognition

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

(R,G,B) pixel →
(Carbon, Nitrogen, Oxygen,...) voxe
The only parameters for
this representation are the
choice of grid resolution,
atom density, and atom
types.

Model Optimization

Atom Types

- Vina (34)
- element-only (18)
- ligand-protein (2)

Atom Density Type

- Boolean
- Gaussian

Radius Multiple

Resolution

Pooling

Depth

Width

Fully Connected Layers

Pose Prediction (PDBbind)

inter-target ranking

Affinity Prediction

aptimize with prior

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://deepdreamgenerator.com/#gallery

Related Work

MolecuLeNet: A continuous-filter convolutional neural network for modeling quantum interactions

Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller (Submitted on 26 Jun 2017)

Automatic chemical design using a data-driven continuous representation of molecules

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, Alán Aspuru-Guzik

(Submitted on 7 Oct 2016 (v1), last revised 6 Jan 2017 (this version, v2))

AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

Izhar Wallach, Michael Dzamba, Abraham Heifets

(Submitted on 10 Oct 2015)

ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost

Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg

(Submitted on 27 Oct 2016 (v1), last revised 6 Feb 2017 (this version, v4))

Convolutional Networks on Graphs for Learning Molecular Fingerprints

David Duvenaud, Dougal Maclaurin, Jorge Aguillera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams

(Submitted on 30 Sep 2015 (v1), last revised 3 Nov 2015 (this version, v2))

Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity

Joseph Gomes, Bharath Ramsundar, Evan N. Feinberg, Vijay S. Pande

(Submitted on 30 Mar 2017)

Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules

Alessendro Lusci*†, Giantuca Pollastri†, and Pierre Baldi*‡

- School of Computer Science and Informatics, University College Dublin, Beiffeld, Dublin 4, Ireland.
- * Department of Computer Science, University of California, Irvine, Irvine, California 92697, United States

J. Chem. Int. Model., 2013, 53 (7), pp 1563–1575. DOI: 10.1021/si400187y Publication Date (Web): June 24, 2013.

Low Data Drug Discovery with One-shot Learning

Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, Vijay Pande

(Submitted on 10 Nov 2016)

Massively Multitask Networks for Drug Discovery

Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, Vijay Pande (Submitted on 6 Feb 2025)

Protein-Ligand Scoring with Convolutional Neural Networks

Matthew Ragoza†‡, Joshus Hochult‡†, Elisa Idrobo⁸, Jocelyn Sunserli, and David Ryan Koes¹i (a)

†Department of Neuroscience, †Department of Computer Science, †Department of Biological Sciences, and †Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

§ Department of Computer Science, The College of New Jersey, Ewing, New Jersey (8628, United States)

J. Cham. Int. Model., 2017, 57 (4), pp 942–957 DOI: 10.1021/acs.jelm.6b00740 Publication Date (Web): April 3, 2017 Copyright 3 2017 American Chemical Society

Key Concepts

Ligand-Based Virtual Screening

Identifying new active compounds based on similarity to known active compounds

Pharmacophore

A spatial arrangement of molecular features essential for biological activity - hydrogen bonding, hydrophobic, charged, etc.

Docking

Predict the position, pose and affinity of a molecule using the receptor structure

Scoring

force field ... empirical ... knowledge based

Acknowledgements

Matt Ragoza

Elisa Idrobo

Josh Hochuli

Jocelyn Sunseri

Group Members

Jocelyn Sunseri Alec Helbling Matt Ragoza Josh Hochuli Pulkit Mittal Aaron Zheng Sharanya Bandla Faiha Khan Lily Turner Dale Erikson

@david_koes

github.com/gnina

http://bits.csb.pitt.edu

