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What is a drug?

2

According to the Food, Drug, and Cosmetic Act (1) : a substance 
recognized in an official pharmacopoeia or formulary (2) : a 
substance intended for use in the diagnosis, cure, mitigation, 
treatment, or prevention of disease (3) : a substance other than 
food intended to affect the structure or function of the body 
(4) : a substance intended for use as a component of a medicine 
but not a device or a component, part, or accessory of a device 
http://www.merriam-webster.com/dictionary/drug

http://www.merriam-webster.com/dictionary/drug
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A small molecule intended to affect the 
structure/function of macromolecules

http://www.merriam-webster.com/dictionary/drug
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Overview of the R&D 
Process

For those who do not work directly in 
drug development, the difficulty of the 
process can be hard to grasp. Numbers 
can help give a sense of the gauntlet 
of challenges each candidate medicine 
must pass through, and those numbers 
are daunting:

 � On average, it takes about 10 to 
15 years for a new medicine to 
complete the journey from initial 
discovery to the marketplace.6,7,8

 � For every 5,000 to 10,000 compounds 
that enter the pipeline, only one 
receives approval. Even medicines 
that reach clinical trials have only a 
16% chance of being approved.9

 � The process is costly. The average 
R&D investment for each new 
medicine is $1.2 billion, including 
the cost of failures,10 with more 
recent studies estimating the costs 
to be even higher.11

Each potential new medicine goes 
through a long series of steps on its 
way to patients. Figure 11 outlines this 
process.

Drug Discovery

The first step in developing a new 
medicine is to understand the disease or 
condition as thoroughly as possible. The 
entire biomedical research community 
contributes to this body of knowledge. 
In the United States, we are fortunate 

to have a have a dynamic, collaborative 
research ecosystem that includes 
researchers from government, industry, 
and academia. 
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specifically acting low-molecular-weight modulators
with an adequate activity in a suitable target assay. Such
initial hits can be generated in a number of ways, depend-
ing on the level of information available8. It is therefore
important to employ alternative hit-identification
strategies that are able to tackle a variety of biological
macromolecular targets effectively, and to identify pro-
prietary, synthetically tractable and pharmacologically
relevant compounds rapidly (FIG. 4).

These methods can be subdivided into those that
require very detailed ligand and/or target information,
and those that do not. The former include techniques
such as mutagenesis, NUCLEAR MAGNETIC RESONANCE (NMR)
and X-ray crystallography, as well as the recognition
information that can be derived from endogenous lig-
ands or non-natural small-molecule surrogates retrieved
from literature and patents. At the other extreme are the
technologies that do not require any prior information
on target or ligand, and which use serendipity-based
search strategies in either a given physical or virtual com-
pound subset. Examples of so-called ‘random’ or
pseudo-biased hit-identification strategies include bio-
physical and biochemical testing that employ one or
other method of detecting a molecular-binding event,
usually in a high-throughput format9.

Between these extremes are more integrated
approaches, including targeted libraries and chemo-
genomics10. The marriage of HTS with computational
chemistry methods11 has allowed a move away from
purely random-based testing, towards more meaning-
ful and directed iterative rapid-feedback searches of
subsets and focused libraries. The prerequisite for suc-
cess of both approaches is the availability of the high-
est-quality compounds possible for screening, either
real or virtual.

Quality versus quantity
Besides the debate about how large a corporate com-
pound collection should be, the questions of how to
judge the quality of the inventory, and how to ultimately
improve it, are important issues12. The collections of

Unfortunately, as the lead molecule becomes increas-
ingly more potent, selective and tailored for the target,
there is generally less tolerance for introducing significant
changes to affect biophysical properties without a large
intrinsic affinity penalty. Such unbalanced, sub-optimal
candidates entering clinical studies have attractive in vitro
profiles but poor ADME attributes that often preclude
them from progressing and being fully evaluated in the
clinic due to, for example, dose-limiting solubility, poor
absorption, CYTOCHROME P450 interactions or metabolic
instability. Clearly, poor initial leads with weak entry
criteria into lead optimization often can not be refined to
generate compounds with an appropriate profile, result-
ing in high attrition rates at the clinical candidate selec-
tion stage. This point has been highlighted in a recent
analysis of launched drugs, which indicates that, gener-
ally, relatively minor changes in structural and physical
molecular properties take place between the lead and the
launched drug candidate7. This emphasizes once more
that the quality of the lead is crucial in most cases to the
success of the refinement and development process. If the
clinical entry criteria are lax, the attrition is moved further
into pilot safety testing or early clinical-phase studies. The
optimization process has historically been largely
sequential in nature, addressing one issue at a time, with
the hope that all necessary modifications could be
accommodated within the PHARMACOPHORE optimized for
affinity only. This approach led to a very high and
expensive failure rate in the clinic for all major pharma-
ceutical companies. During the mid-90s, this view
changed to embrace a more holistic attitude towards
lead optimization and subsequently to hit-to-lead gen-
eration. The required trade-off for balancing these
properties, in conjunction with pure affinity to achieve
an equilibrated potential therapeutic drug molecule,
resulted in a change of approach from sequential to
MULTI-DIMENSIONAL OPTIMIZATION.

Hit and lead generation strategies
The entry point for any chemistry programme within
drug discovery research is generally the identification of

LEAD

A prototypical chemical
structure or series of structures
that demonstrate activity and
selectivity in a pharmacological
or biochemically relevant screen.
This forms the basis for a
focused medicinal chemistry
effort for lead optimization and
development with the goal of
identifying a clinical candidate.
A distinct lead series has a
unique core structure and the
ability to be patented separately.

HIGH-THROUGHPUT

SCREENING

Screening (of a compound
collection) to identify hits in 
an in vitro assay, usually
performed robotically in 
384-well microtitre plates.

HIGH-CONTENT LEAD SERIES

A lead series in which represen-
tatives have been extensively
refined in not only their
structure–activity relationship
and selectivity, but also in their
physicochemical and early
absorption, distribution,
metabolism and excretion
properties, and safety measures,
such as metabolic stability,
permeation and hERG liabilities.
Correlations have been eluci-
dated and all crucial parameters
have shown themselves to be
modulated in the series.

STRUCTURE–ACTIVITY

RELATIONSHIP

The consistent correlation of
structural features or groups
with the biological activity of
compounds in a given 
biological assay.

PHYSICOCHEMICAL PROPERTIES

Physical molecular properties 
of a compound. Typical
properties are solubility, acidity,
lipophilicity, polar surface area,
shape, flexibility and so on.

VALIDATED HIT SERIES

A set of hits clustered into sub-
structurally related families,
representatives of which have
been evaluated for their
specificity, selectivity,
physicochemical and in vitro
ADME properties to
characterize the series.

Hit generation

Hits

Lead generation

Leads

Lead optimization

Clinical
candidate

Early knowledge;
improved decision-making Reduce attrition rates

VHS LSI CCS

Target and
hit identification

Hit
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Figure 3 | Stage-by-stage quality assessment to reduce costly late-stage attrition. Typical important milestones are
VALIDATED HIT SERIES (VHS), LEAD SERIES IDENTIFIED (LSI) and clinical candidate selection (CCS), which ensure that only drug
candidates with an appropriately high-potential profile are advanced to the next phase.

Hit generation
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specifically acting low-molecular-weight modulators
with an adequate activity in a suitable target assay. Such
initial hits can be generated in a number of ways, depend-
ing on the level of information available8. It is therefore
important to employ alternative hit-identification
strategies that are able to tackle a variety of biological
macromolecular targets effectively, and to identify pro-
prietary, synthetically tractable and pharmacologically
relevant compounds rapidly (FIG. 4).

These methods can be subdivided into those that
require very detailed ligand and/or target information,
and those that do not. The former include techniques
such as mutagenesis, NUCLEAR MAGNETIC RESONANCE (NMR)
and X-ray crystallography, as well as the recognition
information that can be derived from endogenous lig-
ands or non-natural small-molecule surrogates retrieved
from literature and patents. At the other extreme are the
technologies that do not require any prior information
on target or ligand, and which use serendipity-based
search strategies in either a given physical or virtual com-
pound subset. Examples of so-called ‘random’ or
pseudo-biased hit-identification strategies include bio-
physical and biochemical testing that employ one or
other method of detecting a molecular-binding event,
usually in a high-throughput format9.

Between these extremes are more integrated
approaches, including targeted libraries and chemo-
genomics10. The marriage of HTS with computational
chemistry methods11 has allowed a move away from
purely random-based testing, towards more meaning-
ful and directed iterative rapid-feedback searches of
subsets and focused libraries. The prerequisite for suc-
cess of both approaches is the availability of the high-
est-quality compounds possible for screening, either
real or virtual.

Quality versus quantity
Besides the debate about how large a corporate com-
pound collection should be, the questions of how to
judge the quality of the inventory, and how to ultimately
improve it, are important issues12. The collections of

Unfortunately, as the lead molecule becomes increas-
ingly more potent, selective and tailored for the target,
there is generally less tolerance for introducing significant
changes to affect biophysical properties without a large
intrinsic affinity penalty. Such unbalanced, sub-optimal
candidates entering clinical studies have attractive in vitro
profiles but poor ADME attributes that often preclude
them from progressing and being fully evaluated in the
clinic due to, for example, dose-limiting solubility, poor
absorption, CYTOCHROME P450 interactions or metabolic
instability. Clearly, poor initial leads with weak entry
criteria into lead optimization often can not be refined to
generate compounds with an appropriate profile, result-
ing in high attrition rates at the clinical candidate selec-
tion stage. This point has been highlighted in a recent
analysis of launched drugs, which indicates that, gener-
ally, relatively minor changes in structural and physical
molecular properties take place between the lead and the
launched drug candidate7. This emphasizes once more
that the quality of the lead is crucial in most cases to the
success of the refinement and development process. If the
clinical entry criteria are lax, the attrition is moved further
into pilot safety testing or early clinical-phase studies. The
optimization process has historically been largely
sequential in nature, addressing one issue at a time, with
the hope that all necessary modifications could be
accommodated within the PHARMACOPHORE optimized for
affinity only. This approach led to a very high and
expensive failure rate in the clinic for all major pharma-
ceutical companies. During the mid-90s, this view
changed to embrace a more holistic attitude towards
lead optimization and subsequently to hit-to-lead gen-
eration. The required trade-off for balancing these
properties, in conjunction with pure affinity to achieve
an equilibrated potential therapeutic drug molecule,
resulted in a change of approach from sequential to
MULTI-DIMENSIONAL OPTIMIZATION.

Hit and lead generation strategies
The entry point for any chemistry programme within
drug discovery research is generally the identification of

LEAD

A prototypical chemical
structure or series of structures
that demonstrate activity and
selectivity in a pharmacological
or biochemically relevant screen.
This forms the basis for a
focused medicinal chemistry
effort for lead optimization and
development with the goal of
identifying a clinical candidate.
A distinct lead series has a
unique core structure and the
ability to be patented separately.
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Figure 3 | Stage-by-stage quality assessment to reduce costly late-stage attrition. Typical important milestones are
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specifically acting low-molecular-weight modulators
with an adequate activity in a suitable target assay. Such
initial hits can be generated in a number of ways, depend-
ing on the level of information available8. It is therefore
important to employ alternative hit-identification
strategies that are able to tackle a variety of biological
macromolecular targets effectively, and to identify pro-
prietary, synthetically tractable and pharmacologically
relevant compounds rapidly (FIG. 4).

These methods can be subdivided into those that
require very detailed ligand and/or target information,
and those that do not. The former include techniques
such as mutagenesis, NUCLEAR MAGNETIC RESONANCE (NMR)
and X-ray crystallography, as well as the recognition
information that can be derived from endogenous lig-
ands or non-natural small-molecule surrogates retrieved
from literature and patents. At the other extreme are the
technologies that do not require any prior information
on target or ligand, and which use serendipity-based
search strategies in either a given physical or virtual com-
pound subset. Examples of so-called ‘random’ or
pseudo-biased hit-identification strategies include bio-
physical and biochemical testing that employ one or
other method of detecting a molecular-binding event,
usually in a high-throughput format9.

Between these extremes are more integrated
approaches, including targeted libraries and chemo-
genomics10. The marriage of HTS with computational
chemistry methods11 has allowed a move away from
purely random-based testing, towards more meaning-
ful and directed iterative rapid-feedback searches of
subsets and focused libraries. The prerequisite for suc-
cess of both approaches is the availability of the high-
est-quality compounds possible for screening, either
real or virtual.

Quality versus quantity
Besides the debate about how large a corporate com-
pound collection should be, the questions of how to
judge the quality of the inventory, and how to ultimately
improve it, are important issues12. The collections of

Unfortunately, as the lead molecule becomes increas-
ingly more potent, selective and tailored for the target,
there is generally less tolerance for introducing significant
changes to affect biophysical properties without a large
intrinsic affinity penalty. Such unbalanced, sub-optimal
candidates entering clinical studies have attractive in vitro
profiles but poor ADME attributes that often preclude
them from progressing and being fully evaluated in the
clinic due to, for example, dose-limiting solubility, poor
absorption, CYTOCHROME P450 interactions or metabolic
instability. Clearly, poor initial leads with weak entry
criteria into lead optimization often can not be refined to
generate compounds with an appropriate profile, result-
ing in high attrition rates at the clinical candidate selec-
tion stage. This point has been highlighted in a recent
analysis of launched drugs, which indicates that, gener-
ally, relatively minor changes in structural and physical
molecular properties take place between the lead and the
launched drug candidate7. This emphasizes once more
that the quality of the lead is crucial in most cases to the
success of the refinement and development process. If the
clinical entry criteria are lax, the attrition is moved further
into pilot safety testing or early clinical-phase studies. The
optimization process has historically been largely
sequential in nature, addressing one issue at a time, with
the hope that all necessary modifications could be
accommodated within the PHARMACOPHORE optimized for
affinity only. This approach led to a very high and
expensive failure rate in the clinic for all major pharma-
ceutical companies. During the mid-90s, this view
changed to embrace a more holistic attitude towards
lead optimization and subsequently to hit-to-lead gen-
eration. The required trade-off for balancing these
properties, in conjunction with pure affinity to achieve
an equilibrated potential therapeutic drug molecule,
resulted in a change of approach from sequential to
MULTI-DIMENSIONAL OPTIMIZATION.

Hit and lead generation strategies
The entry point for any chemistry programme within
drug discovery research is generally the identification of
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structure or series of structures
that demonstrate activity and
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or biochemically relevant screen.
This forms the basis for a
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effort for lead optimization and
development with the goal of
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A distinct lead series has a
unique core structure and the
ability to be patented separately.
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candidates with an appropriately high-potential profile are advanced to the next phase.
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Is it true FDA is approving fewer new drugs lately? 
 
FDA sometimes hears concerns from the public that the Agency is not approving enough new drugs.  Actually, the number of new 
drugs FDA approves each year has remained relatively steady over time.  For instance, In 2010 FDA’s Center for Drug Evaluation and 
Research (CDER) approved 21 novel new drugs known as New Molecular Entities (NMEs).  The chart below shows that this number is 
similar to NME approvals over the past five years.   

Calendar 

Year

NMEs

Approved

2006 22

2007 18

2008 24

2009 26

2010 21

FDA’s Center for Drug Evaluation and Research (CDER) approved 

21 New Molecular Entities (NMEs) in 2010. This is within an 18-26 

range approved for the last several years. 

*Represents applications for New Molecular Entities (NMEs) filed under New Drug 
Applications (NDAs) and therapeutic biologics filed under Original Biologic License 
Applications (BLAs)

 
 
 
In fact, 21 NME approvals in one year is about in line for yearly approvals for the past decade.  The chart below shows a ten year 
period from 2001 through 2010, in which FDA averaged about 23 NME approvals per year (22.9).   

Calendar

Year

NMEs

Approved

2001 24

2002 17

2003 21

2004 36

2005 20

2006 22

2007 18

2008 24

2009 26

2010 21

Since 2001 CDER has averaged slightly fewer than 23 NME 

approvals per year (22.9), similar to the 21 approved in 2010. 

*2004-2010 represents applications for New Molecular Entities (NMEs) filed 
under New Drug Applications (NDAs) and therapeutic biologics filed under 
Original Biologic License Applications (BLAs).  2001-2003 represents NMEs but 
not therapeutic biologics.

 
 

While 21 approvals in 2010 is typical of previous years, an increase in approvals would be the ideal scenario.  A good part of the 
reason for this flat approval rate over time is that drug companies are not filing as many applications with FDA for new drug approval as 
they have in the past.  The chart below shows that over the past five years, applications filed with FDA for NMEs have not been 
increasing.  If applications do not increase, the likelihood of approvals increasing is reduced.  

Calendar
Year

Applications 
Filed

2006 26

2007 35

2008 34

2009 37

2010 23

NME applications to CDER are not increasing. If the number of 
applications does not increase, CDER does not expect to see much of 
a year-to-year increase in approvals. 

*Represents applications for New Molecular Entities (NMEs) filed under New 
Drug Applications (NDAs) and Original Biologic License Applications (BLAs)

 
 
The trend towards fewer filings for NMEs extends beyond the past five years. The chart below shows that except for 2002, in which 22 
applications were filed with FDA for new NMEs, the 23 applications for NMEs in 2010 is the lowest number in over 15 years.      

Calendar
Year

Applications 
Filed

1996 45

1997 41

1998 43

1999 36

2000 26

2001 30

2002 22

2003 26

2004 32

2005 38

2006 26

2007 35

2008 34

2009 37

2010 23

In fact, except for 2002, the 23 NME applications 
to CDER filed in 2010 is the lowest number filed 
in more than 15 years.  

*2004-2010 represents applications for New Molecular Entities (NMEs) filed under
New Drug Applications (NDAs) and therapeutic biologics filed under Original Biologic 

License Applications (BLAs).  2001-2003 represents NMEs but not therapeutic biologics.

 
 
FDA has been taking action for some time to help drive new drug development and increase applications for novel new products.  In 
2004, noting a slowdown, FDA launched its Critical Path Initiative, FDA's national strategy to help advance pharmaceutical innovation.  
Our long-term efforts are showing positive signs and FDA will continue to support the scientific community to advance new drug 
development.  For more information on FDA’s Critical Path Initiative visit: 
http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/default.htm 
 

http://www.fda.gov/downloads/AboutFDA/Transparency/Basics/UCM247465.pdf

New Drugs Approved New Drug Applications

http://www.fda.gov/downloads/AboutFDA/Transparency/Basics/UCM247465.pdf
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specifically acting low-molecular-weight modulators
with an adequate activity in a suitable target assay. Such
initial hits can be generated in a number of ways, depend-
ing on the level of information available8. It is therefore
important to employ alternative hit-identification
strategies that are able to tackle a variety of biological
macromolecular targets effectively, and to identify pro-
prietary, synthetically tractable and pharmacologically
relevant compounds rapidly (FIG. 4).

These methods can be subdivided into those that
require very detailed ligand and/or target information,
and those that do not. The former include techniques
such as mutagenesis, NUCLEAR MAGNETIC RESONANCE (NMR)
and X-ray crystallography, as well as the recognition
information that can be derived from endogenous lig-
ands or non-natural small-molecule surrogates retrieved
from literature and patents. At the other extreme are the
technologies that do not require any prior information
on target or ligand, and which use serendipity-based
search strategies in either a given physical or virtual com-
pound subset. Examples of so-called ‘random’ or
pseudo-biased hit-identification strategies include bio-
physical and biochemical testing that employ one or
other method of detecting a molecular-binding event,
usually in a high-throughput format9.

Between these extremes are more integrated
approaches, including targeted libraries and chemo-
genomics10. The marriage of HTS with computational
chemistry methods11 has allowed a move away from
purely random-based testing, towards more meaning-
ful and directed iterative rapid-feedback searches of
subsets and focused libraries. The prerequisite for suc-
cess of both approaches is the availability of the high-
est-quality compounds possible for screening, either
real or virtual.

Quality versus quantity
Besides the debate about how large a corporate com-
pound collection should be, the questions of how to
judge the quality of the inventory, and how to ultimately
improve it, are important issues12. The collections of

Unfortunately, as the lead molecule becomes increas-
ingly more potent, selective and tailored for the target,
there is generally less tolerance for introducing significant
changes to affect biophysical properties without a large
intrinsic affinity penalty. Such unbalanced, sub-optimal
candidates entering clinical studies have attractive in vitro
profiles but poor ADME attributes that often preclude
them from progressing and being fully evaluated in the
clinic due to, for example, dose-limiting solubility, poor
absorption, CYTOCHROME P450 interactions or metabolic
instability. Clearly, poor initial leads with weak entry
criteria into lead optimization often can not be refined to
generate compounds with an appropriate profile, result-
ing in high attrition rates at the clinical candidate selec-
tion stage. This point has been highlighted in a recent
analysis of launched drugs, which indicates that, gener-
ally, relatively minor changes in structural and physical
molecular properties take place between the lead and the
launched drug candidate7. This emphasizes once more
that the quality of the lead is crucial in most cases to the
success of the refinement and development process. If the
clinical entry criteria are lax, the attrition is moved further
into pilot safety testing or early clinical-phase studies. The
optimization process has historically been largely
sequential in nature, addressing one issue at a time, with
the hope that all necessary modifications could be
accommodated within the PHARMACOPHORE optimized for
affinity only. This approach led to a very high and
expensive failure rate in the clinic for all major pharma-
ceutical companies. During the mid-90s, this view
changed to embrace a more holistic attitude towards
lead optimization and subsequently to hit-to-lead gen-
eration. The required trade-off for balancing these
properties, in conjunction with pure affinity to achieve
an equilibrated potential therapeutic drug molecule,
resulted in a change of approach from sequential to
MULTI-DIMENSIONAL OPTIMIZATION.

Hit and lead generation strategies
The entry point for any chemistry programme within
drug discovery research is generally the identification of

LEAD

A prototypical chemical
structure or series of structures
that demonstrate activity and
selectivity in a pharmacological
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A distinct lead series has a
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such as metabolic stability,
permeation and hERG liabilities.
Correlations have been eluci-
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Figure 3 | Stage-by-stage quality assessment to reduce costly late-stage attrition. Typical important milestones are
VALIDATED HIT SERIES (VHS), LEAD SERIES IDENTIFIED (LSI) and clinical candidate selection (CCS), which ensure that only drug
candidates with an appropriately high-potential profile are advanced to the next phase.
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specifically acting low-molecular-weight modulators
with an adequate activity in a suitable target assay. Such
initial hits can be generated in a number of ways, depend-
ing on the level of information available8. It is therefore
important to employ alternative hit-identification
strategies that are able to tackle a variety of biological
macromolecular targets effectively, and to identify pro-
prietary, synthetically tractable and pharmacologically
relevant compounds rapidly (FIG. 4).

These methods can be subdivided into those that
require very detailed ligand and/or target information,
and those that do not. The former include techniques
such as mutagenesis, NUCLEAR MAGNETIC RESONANCE (NMR)
and X-ray crystallography, as well as the recognition
information that can be derived from endogenous lig-
ands or non-natural small-molecule surrogates retrieved
from literature and patents. At the other extreme are the
technologies that do not require any prior information
on target or ligand, and which use serendipity-based
search strategies in either a given physical or virtual com-
pound subset. Examples of so-called ‘random’ or
pseudo-biased hit-identification strategies include bio-
physical and biochemical testing that employ one or
other method of detecting a molecular-binding event,
usually in a high-throughput format9.

Between these extremes are more integrated
approaches, including targeted libraries and chemo-
genomics10. The marriage of HTS with computational
chemistry methods11 has allowed a move away from
purely random-based testing, towards more meaning-
ful and directed iterative rapid-feedback searches of
subsets and focused libraries. The prerequisite for suc-
cess of both approaches is the availability of the high-
est-quality compounds possible for screening, either
real or virtual.

Quality versus quantity
Besides the debate about how large a corporate com-
pound collection should be, the questions of how to
judge the quality of the inventory, and how to ultimately
improve it, are important issues12. The collections of

Unfortunately, as the lead molecule becomes increas-
ingly more potent, selective and tailored for the target,
there is generally less tolerance for introducing significant
changes to affect biophysical properties without a large
intrinsic affinity penalty. Such unbalanced, sub-optimal
candidates entering clinical studies have attractive in vitro
profiles but poor ADME attributes that often preclude
them from progressing and being fully evaluated in the
clinic due to, for example, dose-limiting solubility, poor
absorption, CYTOCHROME P450 interactions or metabolic
instability. Clearly, poor initial leads with weak entry
criteria into lead optimization often can not be refined to
generate compounds with an appropriate profile, result-
ing in high attrition rates at the clinical candidate selec-
tion stage. This point has been highlighted in a recent
analysis of launched drugs, which indicates that, gener-
ally, relatively minor changes in structural and physical
molecular properties take place between the lead and the
launched drug candidate7. This emphasizes once more
that the quality of the lead is crucial in most cases to the
success of the refinement and development process. If the
clinical entry criteria are lax, the attrition is moved further
into pilot safety testing or early clinical-phase studies. The
optimization process has historically been largely
sequential in nature, addressing one issue at a time, with
the hope that all necessary modifications could be
accommodated within the PHARMACOPHORE optimized for
affinity only. This approach led to a very high and
expensive failure rate in the clinic for all major pharma-
ceutical companies. During the mid-90s, this view
changed to embrace a more holistic attitude towards
lead optimization and subsequently to hit-to-lead gen-
eration. The required trade-off for balancing these
properties, in conjunction with pure affinity to achieve
an equilibrated potential therapeutic drug molecule,
resulted in a change of approach from sequential to
MULTI-DIMENSIONAL OPTIMIZATION.

Hit and lead generation strategies
The entry point for any chemistry programme within
drug discovery research is generally the identification of

LEAD

A prototypical chemical
structure or series of structures
that demonstrate activity and
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absorption, distribution,
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such as metabolic stability,
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Correlations have been eluci-
dated and all crucial parameters
have shown themselves to be
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compounds in a given 
biological assay.

PHYSICOCHEMICAL PROPERTIES

Physical molecular properties 
of a compound. Typical
properties are solubility, acidity,
lipophilicity, polar surface area,
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Figure 3 | Stage-by-stage quality assessment to reduce costly late-stage attrition. Typical important milestones are
VALIDATED HIT SERIES (VHS), LEAD SERIES IDENTIFIED (LSI) and clinical candidate selection (CCS), which ensure that only drug
candidates with an appropriately high-potential profile are advanced to the next phase.
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specifically acting low-molecular-weight modulators
with an adequate activity in a suitable target assay. Such
initial hits can be generated in a number of ways, depend-
ing on the level of information available8. It is therefore
important to employ alternative hit-identification
strategies that are able to tackle a variety of biological
macromolecular targets effectively, and to identify pro-
prietary, synthetically tractable and pharmacologically
relevant compounds rapidly (FIG. 4).

These methods can be subdivided into those that
require very detailed ligand and/or target information,
and those that do not. The former include techniques
such as mutagenesis, NUCLEAR MAGNETIC RESONANCE (NMR)
and X-ray crystallography, as well as the recognition
information that can be derived from endogenous lig-
ands or non-natural small-molecule surrogates retrieved
from literature and patents. At the other extreme are the
technologies that do not require any prior information
on target or ligand, and which use serendipity-based
search strategies in either a given physical or virtual com-
pound subset. Examples of so-called ‘random’ or
pseudo-biased hit-identification strategies include bio-
physical and biochemical testing that employ one or
other method of detecting a molecular-binding event,
usually in a high-throughput format9.

Between these extremes are more integrated
approaches, including targeted libraries and chemo-
genomics10. The marriage of HTS with computational
chemistry methods11 has allowed a move away from
purely random-based testing, towards more meaning-
ful and directed iterative rapid-feedback searches of
subsets and focused libraries. The prerequisite for suc-
cess of both approaches is the availability of the high-
est-quality compounds possible for screening, either
real or virtual.

Quality versus quantity
Besides the debate about how large a corporate com-
pound collection should be, the questions of how to
judge the quality of the inventory, and how to ultimately
improve it, are important issues12. The collections of

Unfortunately, as the lead molecule becomes increas-
ingly more potent, selective and tailored for the target,
there is generally less tolerance for introducing significant
changes to affect biophysical properties without a large
intrinsic affinity penalty. Such unbalanced, sub-optimal
candidates entering clinical studies have attractive in vitro
profiles but poor ADME attributes that often preclude
them from progressing and being fully evaluated in the
clinic due to, for example, dose-limiting solubility, poor
absorption, CYTOCHROME P450 interactions or metabolic
instability. Clearly, poor initial leads with weak entry
criteria into lead optimization often can not be refined to
generate compounds with an appropriate profile, result-
ing in high attrition rates at the clinical candidate selec-
tion stage. This point has been highlighted in a recent
analysis of launched drugs, which indicates that, gener-
ally, relatively minor changes in structural and physical
molecular properties take place between the lead and the
launched drug candidate7. This emphasizes once more
that the quality of the lead is crucial in most cases to the
success of the refinement and development process. If the
clinical entry criteria are lax, the attrition is moved further
into pilot safety testing or early clinical-phase studies. The
optimization process has historically been largely
sequential in nature, addressing one issue at a time, with
the hope that all necessary modifications could be
accommodated within the PHARMACOPHORE optimized for
affinity only. This approach led to a very high and
expensive failure rate in the clinic for all major pharma-
ceutical companies. During the mid-90s, this view
changed to embrace a more holistic attitude towards
lead optimization and subsequently to hit-to-lead gen-
eration. The required trade-off for balancing these
properties, in conjunction with pure affinity to achieve
an equilibrated potential therapeutic drug molecule,
resulted in a change of approach from sequential to
MULTI-DIMENSIONAL OPTIMIZATION.

Hit and lead generation strategies
The entry point for any chemistry programme within
drug discovery research is generally the identification of
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that demonstrate activity and
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This forms the basis for a
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effort for lead optimization and
development with the goal of
identifying a clinical candidate.
A distinct lead series has a
unique core structure and the
ability to be patented separately.
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absorption, distribution,
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properties, and safety measures,
such as metabolic stability,
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Correlations have been eluci-
dated and all crucial parameters
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Figure 3 | Stage-by-stage quality assessment to reduce costly late-stage attrition. Typical important milestones are
VALIDATED HIT SERIES (VHS), LEAD SERIES IDENTIFIED (LSI) and clinical candidate selection (CCS), which ensure that only drug
candidates with an appropriately high-potential profile are advanced to the next phase.
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Absorption 
Distribution 
Metabolism 
Excretion 
Toxicity 
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} Will this be a usable drug?

Screening for ADMET: 
Cytochrome P450 interaction 
Lipinksi’s Rule of Five 
QSPR: Quantitative Structure 
Property Relationship 
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Ligand Based: Similarity

Fingerprint Methods 
- map molecules to a descriptor space: 

1D: molecule weight, #h-bonds, etc. 
2D: paths, bond distances between atom-pairs 

- similarity is “distance” between descriptors 
- for bit vectors, Tanimoto distance used 

11

T (A,B) =
A∩ B
A∪ B
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Ligand Based: Similarity

Superposition Methods 
- compute “overlap” between molecules 

- consider shape, electrostatics, pharmacophores 

13http://www.cresset-group.com/

http://www.cresset-group.com
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Representing Compounds

Conformations 
A single compound has many different shapes 

Choices: Store sampling of explicit conformations, search for 
a good conformation, ignore conformations (2D only) 
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships

15

Cmpd 
Number

Cmpd 
Name

X Log EC50  π Calculated 
Log EC50

Residual

1 6a H 1.07 0 0.79 0.28

2 6b Cl 0.09 0.71 0.21 -0.12

3 6d NO2 0.66 -0.28 1.02 -0.36

4 6e CN 1.42 -0.57 1.26 0.16

5 6f C6H5 -0.62 1.96 -0.81 0.19

6 6g N(CH3)2 0.64 0.18 0.65 -0.01

7 6h I -0.46 1.12 -0.12 -0.34

Properties

C
om

po
un

ds

Biological Activity = Learned linear function of properties

3D-QSAR: includes geometric/structural properties
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Ligand Based: Pharmacophore

Pharmacophore: 
IUPAC: The ensemble of steric and electronic features that is 
necessary to ensure the optimal supra-molecular 
interactions with a specific biological target structure and to 
trigger (or to block) its biological response.

16

Common Features: 
aromatic ring  
hydrophobic area 
positive ionizable 
negative ionizable  
hydrogen bond donor 
hydrogen bond acceptor
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Hydrogen Bond
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Distance: 
D-A: 2.5Å – 3.5Å (4.0Å?) 
H-A: 1.5Å – 2.5Å 
Angle:   
Depends on context

1HJA.pdb
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Aromatic
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Rings offset 
Interplanar distance: 3.3-3.8Å 
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Hydrophobic
Features

Hydrogen 
Acceptor 
Feature

Hydrogen 
Donor 

Feature

Hydrogen 
Donor 

Feature

Pharmacophore 
A spatial arrangement of molecular 
features essential for biological activity

Pharmer Efficient and Exact Pharmacophore Search

Koes, D. R., & Camacho, C. J. (2011). Pharmer: efficient and exact pharmacophore search. 
Journal of Chemical Information and Modeling, 51(6), 1307-1314. doi:10.1021/ci200097m
Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: pharmacophore search of the ZINC database. 
Nucleic acids research, 40(Web Server issue), W409-414. doi:10.1093/nar/gks378



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

29

Hydrophobic
Features

Hydrogen 
Acceptor 
Feature

Hydrogen 
Donor 

Feature

Hydrogen 
Donor 

Feature

Pharmer Efficient and Exact Pharmacophore Search



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

30

Pharmer Efficient and Exact Pharmacophore Search
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Pharmer Efficient and Exact Pharmacophore Search
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ShapeDB Indexed Search of Molecular Shapes

Align to Moments of Inertia Voxelize

Oct-tree 
• Scales with Surface Area, not Volume 
• Fast Intersection/Union Operations
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ShapeDB Indexed Search of Molecular Shapes

Shape Constraints
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MIV MSVMIVMSV

MSV 
Minimum Surrounding Volume 

Union

MIV 
Maximum Included Volume 

Intersection

Matching and packing algorithm for 
efficient and effective initialization

ShapeDB Indexed Search of Molecular Shapes

Koes, D. R., & Camacho, C. J. (2014). Shape-based virtual screening with volumetric aligned molecular shapes.
J Comput Chem, 35(25), 1824-1834. doi:10.1002/jcc.23690
Koes, D., & Camacho, C. (2014). Indexing volumetric shapes with matching and packing. 
Knowledge and Information Systems, 1-24. doi:10.1007/s10115-014-0729-z
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ShapeDB Indexed Search of Molecular Shapes
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Kinds of Virtual Screening

ADMET 
Ligand Based 

- similarity to known binder 

- QSAR 

- pharmacophore 

Receptor Based 
- dock and score

40
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Pharmacophores Aren’t Enough 

41

.2µM 50µM n.i.
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Docking

Determine the conformation and pose of a 
ligand at a docking site 

42

Challenge is to find 
conformation and pose with 
the best score 
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Two Phase Docking

43

1. Global Pose Estimation 2. Local Refinement

Stochastic Minimization



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Two Phase Docking

43

1. Global Pose Estimation 2. Local Refinement

Stochastic Minimization



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Scoring Goals

Affinity Prediction 
 -how well does it bind? 

Inactive/Active Discrimination 
 -does it bind? 

Pose Prediction 
-how does it bind? 

44
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Scoring Goals

Affinity Prediction 
 -how well does it bind? 

Inactive/Active Discrimination 
 -does it bind? 

Pose Prediction 
-how does it bind? 

44

Speed
Approximations: 
Rigid or semi-rigid receptor 
Implicit water model
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Scoring Types

Force-field based 
inter- and intra- molecular forces  
van der Waals, electrostatic, torsional 

Empirical 
parameterized function is fit to binding energy data 

Knowledge based 
scoring function based on known structure, not 
physical principles 

Consensus 

45
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Field 
Scoring
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S1 | Force field-based scoring functions 
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Total energy is given by the sum of energy terms in columns. For two atoms i and j, Aij and 
Bij are van der Waals parameters for given atom types, dij is the interatomic distance, qi 
and qj are atomic partial charges, and ε(dij) is a distance-dependent dielectric function. 
Eelectrostatic, Coulomb energy term; EH-bond, hydrogen bond energy term; Etorsion, torsion energy 
term; EvdW, van der Waals energy term. 
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Dock 4.0
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van der Waals 
a = 12, b = 6 
Lennard-Jones potential 

Coulomb’s Law 
q: partial charges 
D: dielectrict constant

-.41
.205.205
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S2 | Empirical scoring functions   
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The free energy of binding, ∆Gbind, is approximated as a sum of contributing free energy 
terms of hydrogen bonding (H-bond), ionic (ionic), hydrophobic (hydrophobic), ligand 
rotational entropy (rotor), contact (contact), lipophilic (lipo) and metal (metal) components. 
The scoring functions differ in the terms included and the functional forms of the 
contributing free energy terms. ∆GH-bond, ∆Gionic, ∆Ghydrophobic, ∆Grotor, ∆Garomatic, ∆Gcontact, 
∆Gmetal, ∆Glipo are regression coefficients for each corresponding free energy term. ∆G0 is a 
regression constant. The free energy terms are calculated with a function, f, which can 
depend on an angular (∆α) and/or a b distance (∆R) term. 

        

 

Functional form
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r1 r2d
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S3 | Knowledge-based scoring functions 
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Random Forest
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Scoring function R Rs RMSE

RF-Score 0.776 0.762 1.58

X-Score::HMScore 0.644 0.705 1.83

DrugScoreCSD 0.569 0.627 1.96

SYBYL::ChemScore 0.555 0.585 1.98

DS::PLP1 0.545 0.588 2

GOLD::ASP 0.534 0.577 2.02

SYBYL::G-Score 0.492 0.536 2.08

DS::LUDI3 0.487 0.478 2.09

DS::LigScore2 0.464 0.507 2.12

GlideScore-XP 0.457 0.435 2.14

DS::PMF 0.445 0.448 2.14

GOLD::ChemScore 0.441 0.452 2.15

SYBYL::D-Score 0.392 0.447 2.19

DS::Jain 0.316 0.346 2.24

GOLD::GoldScore 0.295 0.322 2.29

SYBYL::PMF-Score 0.268 0.273 2.29

SYBYL::F-Score 0.216 0.243 2.35

RF-Score Output

52
RMSE = 1.58
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R = 0.46; RMSE = 1.6

RF-Score Output

52
RMSE = 1.58
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I dx.doi.org/10.1021/ci200269q |J. Chem. Inf. Model. XXXX, XXX, 000–000
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above, low Med |Err| is more important in this type of scoring.
OVER complexes had errors (pKd/i

experiment ! pKd
score) less

than!1"Med |Err| in at least 7 of the 9 functions (78% of the
methods, a larger percentage than the 12 of 17 requirement for
the sets defined by linear regression). UNDER complexes were
determined by the errors greater than 1"Med |Err| forg7 of 9
methods. Again, structures were determined to be well scored if
their error was <1.1 pKd. This cutoff was maintained even if the
Med |Err| was less than 1.1. This lead to 36 OVER, 28 UNDER,
and 34 GOOD complexes based on Med |Err|. Unfortunately,
there is no way to estimate the statistical significance of the sets
determined in this manner, but the overwhelming majority of
complexes are also in the sets determined by linear regression.
The complexes are listed in the Supporting Information.
Comparison of the GOOD versus BAD Complexes. The

comparison of GOOD and BAD complexes below focuses only
on the sets determined through linear regression because of the
solid statistics outlined in the Introduction Section. We next
applied the concept of a null hypothesis to this portion of the
analysis and developed a null set of complexes (NULL) to
characterize a type of signal-to-noise metric. The first graph in

Figure 5 shows the distribution of affinities for the GOOD,
OVER, and UNDER sets. There is a large bias for OVER
complexes to have low affinities, UNDER complexes to have
high affinities, and GOOD complexes to lie in between. There-
fore, we defined the NULL cases based on affinities and
compared the characteristics of the signal to the inherent back-
ground. Within this framework, the signal is the comparison of
GOOD to OVER and UNDER complexes, and the NULL sets
simply compare complexes with midlevel affinity to weak binders
and tight binders, respectively. First, we divided the 332 com-
plexes into three subsets, using cutoffs ofe50 nM andg50 μM,
as shown in gray shading in Figure 5. We then removed any
UNDER complexes from the high-affinity subset, any GOOD
complexes from the midrange subset, and any OVER complexes
from the low-affinity subset. The NULL set contained 179
complexes: 65 high-, 69 mid-, 45 low-affinity complexes. We
would like to ensure that the differences in physical properties are
not simply a reflection of affinity. Obviously, those properties are
important in scoring and will be represented across the sets, but
the use of a NULL set helps us identify potential bias arising from
the definition of a difficult-to-score system.

Figure 4. Comparison of experimental and calculated values from the nine functions which predicted absolute binding affinity, listed roughly in order of
increasing Med |Err| and RMSE. Black lines represent perfect agreement. The red lines indicate +Med |Err| and !Med |Err| from the black line. The
blue circles denote complexes for whichg7 of the 9 methods have consistently underestimated the affinity by at least Med |Err|, while the red circles are
those where the affinity was overestimated.

Ideally, score would 
equal affinity – but 
this is an unsolved 
problem.

http://www.csardock.org/

http://www.csardock.org
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their error was <1.1 pKd. This cutoff was maintained even if the
Med |Err| was less than 1.1. This lead to 36 OVER, 28 UNDER,
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comparison of GOOD and BAD complexes below focuses only
on the sets determined through linear regression because of the
solid statistics outlined in the Introduction Section. We next
applied the concept of a null hypothesis to this portion of the
analysis and developed a null set of complexes (NULL) to
characterize a type of signal-to-noise metric. The first graph in

Figure 5 shows the distribution of affinities for the GOOD,
OVER, and UNDER sets. There is a large bias for OVER
complexes to have low affinities, UNDER complexes to have
high affinities, and GOOD complexes to lie in between. There-
fore, we defined the NULL cases based on affinities and
compared the characteristics of the signal to the inherent back-
ground. Within this framework, the signal is the comparison of
GOOD to OVER and UNDER complexes, and the NULL sets
simply compare complexes with midlevel affinity to weak binders
and tight binders, respectively. First, we divided the 332 com-
plexes into three subsets, using cutoffs ofe50 nM andg50 μM,
as shown in gray shading in Figure 5. We then removed any
UNDER complexes from the high-affinity subset, any GOOD
complexes from the midrange subset, and any OVER complexes
from the low-affinity subset. The NULL set contained 179
complexes: 65 high-, 69 mid-, 45 low-affinity complexes. We
would like to ensure that the differences in physical properties are
not simply a reflection of affinity. Obviously, those properties are
important in scoring and will be represented across the sets, but
the use of a NULL set helps us identify potential bias arising from
the definition of a difficult-to-score system.

Figure 4. Comparison of experimental and calculated values from the nine functions which predicted absolute binding affinity, listed roughly in order of
increasing Med |Err| and RMSE. Black lines represent perfect agreement. The red lines indicate +Med |Err| and !Med |Err| from the black line. The
blue circles denote complexes for whichg7 of the 9 methods have consistently underestimated the affinity by at least Med |Err|, while the red circles are
those where the affinity was overestimated.

Ideally, score would 
equal affinity – but 
this is an unsolved 
problem.

http://www.csardock.org/

R2 = 0.28 
RMSE = 1.9

http://www.csardock.org
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above, low Med |Err| is more important in this type of scoring.
OVER complexes had errors (pKd/i

experiment ! pKd
score) less

than!1"Med |Err| in at least 7 of the 9 functions (78% of the
methods, a larger percentage than the 12 of 17 requirement for
the sets defined by linear regression). UNDER complexes were
determined by the errors greater than 1"Med |Err| forg7 of 9
methods. Again, structures were determined to be well scored if
their error was <1.1 pKd. This cutoff was maintained even if the
Med |Err| was less than 1.1. This lead to 36 OVER, 28 UNDER,
and 34 GOOD complexes based on Med |Err|. Unfortunately,
there is no way to estimate the statistical significance of the sets
determined in this manner, but the overwhelming majority of
complexes are also in the sets determined by linear regression.
The complexes are listed in the Supporting Information.
Comparison of the GOOD versus BAD Complexes. The

comparison of GOOD and BAD complexes below focuses only
on the sets determined through linear regression because of the
solid statistics outlined in the Introduction Section. We next
applied the concept of a null hypothesis to this portion of the
analysis and developed a null set of complexes (NULL) to
characterize a type of signal-to-noise metric. The first graph in

Figure 5 shows the distribution of affinities for the GOOD,
OVER, and UNDER sets. There is a large bias for OVER
complexes to have low affinities, UNDER complexes to have
high affinities, and GOOD complexes to lie in between. There-
fore, we defined the NULL cases based on affinities and
compared the characteristics of the signal to the inherent back-
ground. Within this framework, the signal is the comparison of
GOOD to OVER and UNDER complexes, and the NULL sets
simply compare complexes with midlevel affinity to weak binders
and tight binders, respectively. First, we divided the 332 com-
plexes into three subsets, using cutoffs ofe50 nM andg50 μM,
as shown in gray shading in Figure 5. We then removed any
UNDER complexes from the high-affinity subset, any GOOD
complexes from the midrange subset, and any OVER complexes
from the low-affinity subset. The NULL set contained 179
complexes: 65 high-, 69 mid-, 45 low-affinity complexes. We
would like to ensure that the differences in physical properties are
not simply a reflection of affinity. Obviously, those properties are
important in scoring and will be represented across the sets, but
the use of a NULL set helps us identify potential bias arising from
the definition of a difficult-to-score system.

Figure 4. Comparison of experimental and calculated values from the nine functions which predicted absolute binding affinity, listed roughly in order of
increasing Med |Err| and RMSE. Black lines represent perfect agreement. The red lines indicate +Med |Err| and !Med |Err| from the black line. The
blue circles denote complexes for whichg7 of the 9 methods have consistently underestimated the affinity by at least Med |Err|, while the red circles are
those where the affinity was overestimated.

Ideally, score would 
equal affinity – but 
this is an unsolved 
problem.

http://www.csardock.org/

R2 = 0.58 
RMSE = 1.51

http://www.csardock.org
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Ideally, score would 
equal affinity – but 
this is an unsolved 
problem.

http://www.csardock.org/

R2 = 0.58 
RMSE = 1.51

http://www.csardock.org
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Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 11(5): 
e0155183. doi:10.1371/journal.pone.0155183
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Can we do better?
Accurate pose prediction, binding 
discrimination, and affinity prediction without 
sacrificing performance? 

Key Idea: Leverage “big data” 
231,655,275 bioactivities in PubChem 

125,526 structures in the PDB 

16,179 annotated complexes in PDBbind
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Neural Networks

step sigmoid ReLU
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, a 
feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.
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Image Recognition

https://devblogs.nvidia.com

Convolutional Neural Networks
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Convolutional Neural Networks
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CNNs for Protein-Ligand Scoring

CNN
Pose Prediction

Binding 
Discrimination
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Protein-Ligand Representation

(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel
The only parameters for 
this representation are the 
choice of grid resolution, 
atom density, and atom 
types.
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Model Optimization

Atom Types 
• Vina (34) 
• element-only (18) 
• ligand-protein (2) 

Atom Density Type 
• Boolean 
• Gaussian 

Radius Multiple 
Resolution 

Pooling 
Depth 
Width 
Fully Connected 
Layers  

unit1_pool 

unit1_conv1 
32 x 24^3

loss 

unit2_pool 

unit2_conv1 
64 x 12^3

label

unit3_pool 

output_fc 
2

output 

unit3_conv1 
128 x 6^3

data 
48^3
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Pose Prediction (CSAR)

inter-target ranking intra-target ranking
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Pose Prediction (PDBbind)

inter-target ranking intra-target ranking
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Binding Determination

102 targets 
• 22,645 actives 
• 1,407,145 decoys 
• <10µM affinity 
• true poses unknown
• use docked poses 
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Affinity Prediction

unit1_pool 

unit1_conv1 
32 x 24^3

loss 

unit2_pool 

unit2_conv1 
64 x 12^3

label

unit3_pool 

output_fc 
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output 

unit3_conv1 
128 x 6^3

data 
48^3

output_af

affinity
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Beyond Scoring

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Beyond Scoring

2Q89

More Oxygen Here

Less Oxygen Here



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Beyond Scoring

2Q89

More Oxygen Here

Less Oxygen Here



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Minimizing Low RMSD Poses

better worse
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