Peeking into the Black Box of Molecular Deep Learning David Koes @david_koes

Gordon Research Conference: Computer Aided Drug Design Mount Snow, VT July 17, 2019

ELSEVIER

Visualizing convolutional neural network protein-ligand scoring

Joshua Hochuli, Alec Helbling, Tamar Skaist, Matthew Ragoza, David Ryan Koes Ӓ 🖾

Journal of Molecular Graphics and Modelling Volume 84, September 2018, Pages 96-108

But first... Novel Insights from Data Visualization with Redagogical Active Learning

REPORT

Improved Learning in a Large-Enrollment Physics Class 50

Louis Deslauriers ^{1,2} , Ellen Schelew ² , Carl Wieman ^{*,†‡}	45 -
+ See all authors and affiliations	40 -
Science 13 May 2011:	35 -
DOI: 10.1126/science.1201783	30 -
e G	25 -
ber	20 -
<u><u></u><u></u><u></u></u>	15 -
Z	10 -

5 0

Pedagogical Active Learning

Contents lists available at ScienceDirect

Computers & Education

journal homepage: www.elsevier.com/locate/compedu

A meta-analysis of the effects of audience response systems (clicker-based technologies) on cognition and affect

Nathaniel J. Hunsu^{*}, Olusola Adesope, Dan James Bayly

Educational Leadership, Sport Studies, Educational and Counseling Psychology, Washington State University, Pullman, WA 99164-4530, USA

"Overall, we found small but significant effects of using ARS-based technologies on a number of desirable cognitive and non-cognitive learning outcomes."

Go to this URL: <u>http://3dmol.csb.pitt.edu/viewer.html?session=GRC</u>

Pedagogical Active Learning https://github.com/dkoes/asker.js

•••	S mdanalysis slides X	+				
$\leftarrow \rightarrow$	C O Not Secure mscbio2025	.csb.pitt.edu/notes/mdanalysis.slides.html#/25	☆	0	26	:

If frame 40 is ~2 RMSD from the start and frame 80 is ~2 RMSD from the start. What can be said about the RMSD between frames 40 and 80?

- It is ~0
- O It is < ~2</p>
- It is < ~4</p>
- \bigcirc Nothing

14 Answers

Submit

Go to this URL: http://3dmol.csb.pitt.edu/viewer.html?session=GRC

Go to this URL: <u>http://3dmol.csb.pitt.edu/viewer.html?session=GRC</u>

Computational and Systems Biology

University of Pittsburgh

Molecular Active Learning

Demo

Go to this URL: <u>http://3dmol.csb.pitt.edu/viewer.html?session=GRC</u>

Structure Based Drug Design

Affinity Prediction Pose Prediction **Binding Discrimination**

Virtual Screening

Lead Optimization

Drug Discovery Funnel

http://pharmit.csb.pitt.edu

	Θ	
\$	5. :	
lts	8	
Mass	RBnds	
395	1 📼	
330	0	
607	15	
314	0	
275	0	
351	0	
330	0	
300	1	
288	0	
272	0	
272	0	
272	0	
296	0	
378	1	
312	1	
375	3	
288	0	
607	15	
335 hits		
conds	t	
ve		

Drug Discovery Funnel

$$\mathrm{hydrophobic}(d) \;=\; \left\{egin{array}{cc} w_{\mathrm{hydrophobic}} & d \ 0 & d \ w_{\mathrm{hydrophobic}}(1.5-d) & o \end{array}
ight.$$

$$\mathrm{hbond}(d) \;=\; \left\{egin{array}{cc} w_\mathrm{hbond} & d < -0, \ 0 & d > 0 \ w_\mathrm{hbond}(-rac{10}{7}d) & otherwin \end{array}
ight.$$

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

.7

ise

Protein-Ligand Scoring

Computational and Systems Biology

Pose Prediction

Binding Discrimination

Affinity Prediction

Neural Networks

The **universal approximation theorem** states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

At last – a computer program that can beat a champion Go player MEE48

CERSERVITOR SONGBIRDS A LA CARTE Appelhamestoforfiler gladebornecombires 86642

FEEDFON ET NICE SAFEGUARD TRANSPARENCY

TORULAE NO DREE WHEN GENES GOT 'SELFISH' Davidue's calling aralybri y yven Miletis

STRUCT STRUCTURE WE DER, NO. 70

Convolutional Neural Networks

Convolutional Filters

-1	-1	-1
0	0	0
1	1	1

-1	0	1	-1	-1	-1
-1	0	1	-1	8	-1
-1	0	1	-1	-1	-1

Protein-Ligand Representation

- (R,G,B) pixel \rightarrow
- (Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Cons

- coordinate frame dependent
- pairwise interactions not explicit

Why Grids?

Pros

- clear spatial relationships
- amazingly parallel
- easy to interpret

libmolgrid

Caffe Training

PyTorch Training

GPU Performance

GPU Memory Utilization (MB) 150 2000-Memory 1500-Model 1000-Total Wall Time (22 50 51 50 Maximum 500 0 PyTorch Caffe Caffe PyTorch Keras Keras Dgithub.com/gnina/libmolgrid

Keras Training


```
e = molgrid.ExampleProvider(balanced=True, shuffle=True)
e.populate('examples.txt')
```

```
gmaker = molgrid.GridMaker()
```

```
batch = e.next_batch(batch_size)
gmaker.forward(batch, input_tensor,
          random_translation=0, random_rotation=True)
```


PDBbind 2016 refined set

- 4056 protein-ligand complexes
- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose

Redocked Training Set

Training

Pocketome

- 2923 distinct pockets
- 27,142 receptor structures
- 4,138,117 non-redundant poses
- generate poses with AutoDock Vina
- include minimized crystal pose

Crossdocked Training Set

Optimized Models

Anatomy of a deep learning paper

Strong empirical results

Post hoc theoretical explanation

-

University of Pittsburgh

Filter

Visualizing with Atomistic Probes

Visualizing with Atomistic Probes

Hydrogen Bonds... or Not

Receptor Atom Type

Visualizing with Atomistic Probes

Aliphatic Carbon

Aromatic Carbon

Oxygen Acceptor

Visualizing with Atomistic Probes

Nitrogen Acceptor

Oxygen Donor/Acceptor

Visualizing with Atomistic Probes

Nitrogen Donor

Visualizing with Atomistic Probes

Fluorine

Carbon

Visualizing Network Decisions

masking

gradients

layer-wise relevance

Computational and Systems Biology

Masking: Enzyme Mutants

Partially Aligned Poses

Gradients

Gradients

2Q89 Less Oxygen Here More Oxygen Here

$\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$

Pseudoligand From Gradients

TIDE

0.0005 -

0.0004 -

0.0002

0.0003

0.0005

0.0044

1.1012

Lig AliphaticCarbonXSNonHvdrophobe

Lig AromaticCarbonX3Hydrophube Lig NitrogenXSDonorAcceptor

0.0003 0.0005 0.0001 0.0003

Lig AromaticCarbonXSNonHydrophobe Lig NitrogenXSAcceptor

Lig Oxygen

Lig OxygenXSDonorAcceptor

Layer-wise Relevance

On Pixel-Wise Explanations for Non-Linear Classifier **Decisions by Layer-Wise Relevance Propagation**

Sebastian Bach 💿 🖾, Alexander Binder 💿, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller 🖾, Wojciech Samek 🖾

Published: July 10, 2015 • https://doi.org/10.1371/journal.pone.0130140

Masking

Visualizations

Gradients

LRP

Distance

Acknowledgements

Jocelyn Sunseri

Hunter Haaf

Paul Francoeur

Josh Hochuli

Keshavan Seshadri

Matt Ragoza

Alec Helbling

Department of Computational and Systems Biology

National Institute of General Medical Sciences R01GM108340

G github.com/gnina Github.com/3dmol

