

Sequence \rightarrow Structure \rightarrow Function

ethanol

acetaldehyde

Alcohol Dehydrogenase

З

COVID-19

Mealth Food Fitness Wellness Parenting Vital Signs

First human trial of potential antibody treatment for **Covid-19 begins**

By Jen Christensen, CNN () Updated 12:37 AM ET, Tue June 2, 2020

If the trial ultimately shows the treatment is effective against Covid-19, it could be available by autumn, according to the Indianapolis-based company.

LIVE TV Edition ∨ Q

University of Pittsburgh

Tertiary Structure

beta barrel

domain swapping

hemoglobin

Structure Determination

crystal x-rays diffraction pattern phases $\mathcal{F}\left\{g(t)\right\} = G(f) = \int_{-\infty}^{\infty} g(t)e^{-2\pi i f t} dt$ $\mathcal{F}^{-1}\left\{G(f)\right\} = \int_{0}^{\infty} G(f)e^{2\pi i f t} df = g(t)$ refinement electron density map fitting atomic model

x-ray crystallography

nuclear magnetic resonance

Sequence → Structure → Function Motion

Sequence → Structure → Function Motion

$$egin{split} V(r^N) &= \sum_{ ext{bonds}} k_b (l-l_0)^2 + \sum_{ ext{angles}} k_a (heta - heta_0)^2 \ &+ \sum_{ ext{torsions}} \sum_n rac{1}{2} V_n [1 + \cos(n \omega - \gamma)] \ &+ \sum_{j=1}^{N-1} \sum_{i=j+1}^N f_{ij} iggl\{ \epsilon_{ij} iggl[iggl(rac{r_{0ij}}{r_{ij}}iggr)^{12} - 2iggl(rac{r_{0ij}}{r_{ij}}iggr)^6iggr] + rac{q_i q_j}{4\pi\epsilon_0 r_{ij}}iggr\} \end{split}$$

https://en.wikibooks.org/wiki/Structural_Biochemistry/Molecular_Modeling/Molecular_Dynamics

$$egin{split} V(r^N) &= \sum_{ ext{bonds}} k_b (l-l_0)^2 + \sum_{ ext{angles}} k_a (heta - heta_0)^2 \ &+ \sum_{ ext{torsions}} \sum_n rac{1}{2} V_n [1 + \cos(n \omega - \gamma)] \ &+ \sum_{j=1}^{N-1} \sum_{i=j+1}^N f_{ij} iggl\{ \epsilon_{ij} iggl[iggl(rac{r_{0ij}}{r_{ij}}iggr)^{12} - 2iggl(rac{r_{0ij}}{r_{ij}}iggr)^6iggr] + rac{q_i q_j}{4\pi\epsilon_0 r_{ij}}iggr\} \end{split}$$

https://en.wikibooks.org/wiki/Structural_Biochemistry/Molecular_Modeling/Molecular_Dynamics

Protein Folding

Chignolin 106 *µ*s cln025 1.0 Å 0.6 µs

WW domain 1137 µs 2F21 1.2 Å 21 µs

Homeodomain 327 µs 2P6J 3.6 Å 3.1 µs

208 µs Trp-cage 2JOF 1.4 Å 14 μs

BBA

BBL

2936 µs NTL9 2HBA 0.5 Å 29 µs

Protein G 1154 µs 1MIO 1.2 Å 65 µs

2WXC 4.8 Å 29 µs

α3D 707 µs 2A3D 3.1 Å 27 μs

Villin 2F4K 1.3 Å 2.8 µs

325 µs

429 µs

1FME 1.6 Å 18 µs

Protein B

λ-repressor 643 µs 1LMB 1.8 Å 49 µs

125 µs

https://en.wikipedia.org/wiki/Anton_(computer)

How Fast-Folding Proteins Fold

Kresten Lindorff-Larsen^{1,*,†}, Stefano Piana^{1,*,†}, Ron O. Dror¹, David E. Shaw^{1,2,†}

¹D. E. Shaw Research, New York, NY 10036, USA.

²Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.

↓[†]To whom correspondence should be addressed. E-mail: david.shaw@DEShawResearch.com (D.E.S.); kresten.lindorff-larsen@DEShawResearch.com (K.L.-L.); stefano.piana-agostinetti@DEShawResearch.com (S.P.)

← * These authors contributed equally to the manuscript.

+ See all authors and affiliations

Science 28 Oct 2011: Vol. 334, Issue 6055, pp. 517-520 DOI: 10.1126/science.1208351

Find sequence alignment to template

HPRRLLLPNTLGLGRRRYSPYERSHGHHNQMSRRASGGPNALLPAVGKDGFQVCMDVSQFKPNELTVKVVDNTV template NAFESVMKEMSAIQPREFHPELEYTQP----GELDFLKDAYEVGKDGRLHFKVYFNVKNFKAEEITIKADKNKLV

Build backbone from template (loops??)

Add side-chains

https://zhanglab.ccmb.med.umich.edu/I-TASSER/

Find sequence alignment to template

HPRRLLLPNTLGLGRRRYSPYERSHGHHNQMSRRASGGPNALLPAVGKDGFQVCMDVSQFKPNELTVKVVDNTV template NAFESVMKEMSAIQPREFHPELEYTQP----GELDFLKDAYEVGKDGRLHFKVYFNVKNFKAEEITIKADKNKLV

Build backbone from template (loops??)

Add side-chains

http://swissmodel.expasy.org/

https://www.biorxiv.org/content/early/2018/02/14/265231

AlphaFold

https://deepmind.com/blog/alphafold/

T0954 / 6CVZ

T0965 / 6D2V

T0955 / 5W9F

T0954 / 6CVZ

T0965 / 6D2V

T0955 / 5W9F

AlphaFold

https://deepmind.com/blog/alphafold/

T0954 / 6CVZ

T0965 / 6D2V

T0955 / 5W9F

T0954 / 6CVZ

T0965 / 6D2V

T0955 / 5W9F

Computational Drug Discovery

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

BASIC DRUG PRE- DISCOVERY PRE- CLINICAL		CLINICAL TRIALS		FDA REVIEW	POST-APPROVAL RESEARCH & MONITORING
	PHASE I	PHASE II	PHASE III	1 F APPR MEDI	OVED
				\$2 BILL	
	TENS	NUMBER OF VOLUNTE HUNDREDS	ERS THOUSANDS	NDA/BLA SUBMITTED	

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

Target Identification

Screening

Compounds

Hits

Lead Identification

Lead Optimization

Virtual

Target Identification

Screening

Compounds

Hits

Lead Identification

Lead Optimization

Leads

Cost

Fingerprint Methods

- map molecules to a descriptor space:
 - 1D: molecule weight, #h-bonds, etc.
 - 2D: paths, bond distances between atom-pairs Example: Daylight/FP2

- all paths up to 7 bonds long
- each path corresponds to a bit
- similarity is "distance" between descriptors
- for bit vectors, Tanimoto distance used

 $T(A,B) = \frac{|A| |B|}{|A| |D|}$

Fingerprint Methods

- map molecules to a descriptor space:
 - 1D: molecule weight, #h-bonds, etc.
 - 2D: paths, bond distances between atom-pairs Example: Daylight/FP2

- all paths up to 7 bonds long
- each path corresponds to a bit
- similarity is "distance" between descriptors
- for bit vectors, Tanimoto distance used

 $T(A,B) = \frac{|A| |B|}{|A| |B|}$

University of Pittsburgh

Structure Based Drug Design

Unlike ligand based approaches, generalizes to new targets

Requires molecular target with known structure and binding site

Structure Based Drug Design Lead Optimization **Virtual Screening**

Pose Prediction

Binding Discrimination

Affinity Prediction

Structure Based Drug Design Lead Optimization **Virtual Screening**

Pose Prediction

Binding Discrimination

Affinity Prediction

Protein-Ligand Scoring AutoDock Vina

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

Pharmacophore

IUPAC: The ensemble of steric and electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

Common Features:

aromatic ring hydrophobic area positive ionizable negative ionizable hydrogen bond donor hydrogen bond acceptor

Purchasable an - - - - -

Computational and Systems Biology

 Gbuffer ——Act100C2 ActPfn50C2 -ActPfn100C2 ActPfn

	re Resul	ts	
Name	RMSD 🔻	Mass 🕴	RBnd
PubChem-13960682	0.223	392	5
PubChem-23673360	0.223	391	4
PubChem-13960682	0.223	392	5
PubChem-23673360	0.223	391	4
PubChem-13960684	0.243	388	6
PubChem-13960684	0.243	388	6
PubChem-13960684	0.243	388	6
PubChem-13960684	0.250	388	6
PubChem-59810304	0.311	481	8
PubChem-10000399	0.325	389	6
PubChem-10000399	0.327	389	6
PubChem-59081061	0.349	875	15
PubChem-10250942	0.379	387	3
PubChem-23686481	0.379	386	2
PubChem-13960681	0.442	385	7
PubChem-13960681	0.442	385	7
PubChem-13960681	0.444	385	7
PubChem-88181354	0.449	698	10
PubChem-842716	0.462	319	8

Computational and Systems Biology

	re Resul	ts	
Name	RMSD 🔻	Mass 🕴	RBnd
PubChem-13960682	0.223	392	5
PubChem-23673360	0.223	391	4
PubChem-13960682	0.223	392	5
PubChem-23673360	0.223	391	4
PubChem-13960684	0.243	388	6
PubChem-13960684	0.243	388	6
PubChem-13960684	0.243	388	6
PubChem-13960684	0.250	388	6
PubChem-59810304	0.311	481	8
PubChem-10000399	0.325	389	6
PubChem-10000399	0.327	389	6
PubChem-59081061	0.349	875	15
PubChem-10250942	0.379	387	3
PubChem-23686481	0.379	386	2
PubChem-13960681	0.442	385	7
PubChem-13960681	0.442	385	7
PubChem-13960681	0.444	385	7
PubChem-88181354	0.449	698	10
PubChem-842716	0.462	319	8

http://pharmit.csb.pitt.edu 4PPS DUDe ER alpha benchmark

University of Pittsburgh

sensitivity, recall, hit rate, or true positive rate (TPR) $TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$ specificity, selectivity or true negative rate (TNR) $TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$ precision or positive predictive value (PPV) $PPV = \frac{TP}{TP + FP} = 1 - FDR$ accuracy (ACC) $ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$ F1 score is the harmonic mean of precision and sensitivity $F_1 = 2 \cdot rac{\text{PPV} \cdot \text{TPR}}{\text{PPV} + \text{TPR}} = rac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$

Metrics

https://en.wikipedia.org/wiki/F1_score

