## COM

September

## **Deep Learning for Drug Discovery** David Koes

2nd RSC-BMCS / RSC-CICAG

S@david\_koes





# Structure Based Drug Design

### Affinity Prediction Pose Prediction **Binding Discrimination**



### **Virtual Screening**



### Lead Optimization



# Structure Based Drug Design

### Affinity Prediction Pose Prediction **Binding Discrimination**



### **Virtual Screening**



### Lead Optimization





## Drug Discovery Funnel



### http://pharmit.csb.pitt.edu



|          | Θ     |  |
|----------|-------|--|
| \$       | 5. :  |  |
| lts      | 8     |  |
| Mass     | RBnds |  |
| 395      | 1 🗖   |  |
| 330      | 0     |  |
| 607      | 15    |  |
| 314      | 0     |  |
| 275      | 0     |  |
| 351      | 0     |  |
| 330      | 0     |  |
| 300      | 1     |  |
| 288      | 0     |  |
| 272      | 0     |  |
| 272      | 0     |  |
| 272      | 0     |  |
| 296      | 0     |  |
| 378      | 1     |  |
| 312      | 1     |  |
| 375      | 3     |  |
| 288      | 0     |  |
| 607      | 15    |  |
| 335 hits | t     |  |
| ve       |       |  |





## Drug Discovery Funnel

$$\mathrm{hydrophobic}(d) \;=\; \left\{egin{array}{cc} w_{\mathrm{hydrophobic}} & d \ 0 & d \ w_{\mathrm{hydrophobic}}(1.5-d) & o \end{array}
ight.$$

$$\mathrm{hbond}(d) \;=\; \left\{egin{array}{cc} w_\mathrm{hbond} & d < -0, \ 0 & d > 0 \ w_\mathrm{hbond}(-rac{10}{7}d) & otherwin \end{array}
ight.$$



O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461



### smina.sf.net

### **Computational and Systems Biology**





smina.sf.net



### Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model. 2013 Aug 26;53(8):1893-904.

### **Computational and Systems Biology**



# Protein-Ligand Scoring



**Computational and Systems Biology** 

# 

### Pose Prediction

### Binding Discrimination

### Affinity Prediction







## Neural Networks

![](_page_8_Picture_4.jpeg)

The **universal approximation theorem** states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

![](_page_8_Picture_6.jpeg)

![](_page_9_Figure_2.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_9_Picture_5.jpeg)

![](_page_10_Figure_2.jpeg)

## Deep Learning

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_6.jpeg)

![](_page_10_Picture_7.jpeg)

![](_page_10_Picture_8.jpeg)

![](_page_10_Picture_9.jpeg)

CENSERVITOR SONGBIRDS ALA CARTE Magacinatustof influence glidadizerus contorse Mai 62

FEED/FOR ET HILLS SAFEGUARD TRANSPARENCY Det 1 de querense de clefter or redration? Mailie

TO RULAF, SCI DICE. WHEN GENES GOT'SELFISH' Bradchack colling meditery wars on Milder

363070093616-3 341308,9627047

STATURE CONTINUES s 7(0)220±9292

![](_page_10_Picture_15.jpeg)

![](_page_10_Picture_16.jpeg)

![](_page_11_Picture_1.jpeg)

## Deep Learning

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_5.jpeg)

![](_page_11_Picture_6.jpeg)

At last – a computer program that can beat a champion Go player MEE48

![](_page_11_Picture_8.jpeg)

CERSERVITOR SONGBIRDS A LA CARTE Wagna' between a for of the for-sy keep of t

FEEDFON ET NICE SAFEGUARD TRANSPARENCY

TORULAE NO DREE WHEN GENES GOT 'SELFISH' Davidue's calling narolybrity years Militing

STRUCT STRUCTURE WE DER, NO. 70

![](_page_11_Picture_13.jpeg)

![](_page_11_Picture_15.jpeg)

![](_page_11_Picture_16.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_4.jpeg)

## **Convolutional Neural Networks**

![](_page_12_Picture_8.jpeg)

## **Convolutional Filters**

![](_page_13_Picture_2.jpeg)

| -1 | -1 | -1 |
|----|----|----|
| 0  | 0  | 0  |
| 1  | 1  | 1  |

| -1 | 0 | 1 | -1 | -1 | -1 |
|----|---|---|----|----|----|
| -1 | 0 | 1 | -1 | 8  | -1 |
| -1 | 0 | 1 | -1 | -1 | -1 |

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

## **Protein-Ligand Representation**

![](_page_14_Figure_2.jpeg)

(R,G,B) pixel

![](_page_14_Picture_5.jpeg)

# **Protein-Ligand Representation**

![](_page_15_Picture_2.jpeg)

- (R,G,B) pixel  $\rightarrow$
- (Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

![](_page_15_Picture_7.jpeg)

## Cons

- coordinate frame dependent
- pairwise interactions not explicit

![](_page_16_Figure_5.jpeg)

## Why Grids?

## Pros

- clear spatial relationships
- amazingly parallel
- easy to interpret

![](_page_16_Figure_12.jpeg)

![](_page_16_Picture_13.jpeg)

# Data Augmentation

![](_page_17_Figure_2.jpeg)

2000

![](_page_17_Picture_5.jpeg)

![](_page_17_Picture_6.jpeg)

# Data Augmentation

![](_page_18_Figure_2.jpeg)

2000

![](_page_18_Picture_5.jpeg)

![](_page_18_Picture_6.jpeg)

![](_page_19_Picture_2.jpeg)

PDBbind 2016 refined set

- 4056 protein-ligand complexes
- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose

![](_page_19_Picture_9.jpeg)

### **Redocked Training Set**

Training

![](_page_19_Picture_13.jpeg)

Pocketome

- 2923 distinct pockets
- 27,142 receptor structures
- 4,138,117 non-redundant poses
- generate poses with AutoDock Vina
- include minimized crystal pose

![](_page_19_Picture_20.jpeg)

### **Crossdocked Training Set**

![](_page_19_Picture_22.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_9.jpeg)

# **Optimized Models**

![](_page_21_Figure_2.jpeg)

## Default2018

![](_page_21_Figure_5.jpeg)

![](_page_21_Figure_6.jpeg)

![](_page_21_Picture_7.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_1.jpeg)

### Default2017 Default2018 HiRes Affinity

# Pose Results

![](_page_23_Picture_5.jpeg)

## Crossdocked Pose

![](_page_23_Picture_7.jpeg)

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_24_Figure_1.jpeg)

### Clustered Cross Validation

![](_page_24_Picture_5.jpeg)

### **University of Pittsburgh**

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_4.jpeg)

# Flexible Docking Scoring

![](_page_26_Figure_2.jpeg)

### Protein Family-Specific Models Using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data

Fergus Imrie<sup>†</sup> (b), Anthony R. Bradley<sup>‡¶§</sup>, Mihaela van der Schaar<sup>1⊥</sup>, and Charlotte M. Deane\*<sup>†</sup> (b)

<sup>†</sup> Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, U.K.

<sup>‡</sup> Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K.

<sup>¶</sup> Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.

§ Diamond Light Source Ltd., Didcot OX11 0DE, U.K.

- <sup>1</sup> Department of Engineering, University of Oxford, Oxford OX1 3PJ, U.K.
- <sup>1</sup> Alan Turing Institute, London NW1 2DB, U.K.

![](_page_27_Picture_10.jpeg)

![](_page_27_Figure_11.jpeg)

Virtual Screening

![](_page_27_Figure_14.jpeg)

![](_page_27_Picture_15.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Picture_3.jpeg)

# Virtual Screening

### In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening

Jochen Sieg (D), Florian Flachsenberg (D), and Matthias Rarey\* (D)

Universität Hamburg, ZBH - Center for Bioinformatics, Research Group for Computational Molecular Design, Bundesstraße 43, 20146 Hamburg, Germany

### Hidden Bias in the DUD-E Dataset Leads to Misleading Performance of Deep Learning in Structure-Based Virtual Screening

Preprint submitted on 24.03.2019, 15:39 and posted on 25.03.2019, 12:58 by Lieyang Chen, Anthony Cruz, Steven Ramsey, Callum J. Dickson, José S. Duca, Viktor Hornak, David R. Koes, Tom Kurtzman

![](_page_28_Picture_11.jpeg)

![](_page_28_Picture_12.jpeg)

![](_page_29_Figure_2.jpeg)

![](_page_29_Picture_3.jpeg)

# Virtual Screening

### In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening

Jochen Sieg (D), Florian Flachsenberg (D), and Matthias Rarey\* (D)

Universität Hamburg, ZBH - Center for Bioinformatics, Research Group for Computational Molecular Design, Bundesstraße 43, 20146 Hamburg, Germany

### Hidden Bias in the DUD-E Dataset Leads to Misleading Performance of Deep Learning in Structure-Based Virtual Screening

Preprint submitted on 24.03.2019, 15:39 and posted on 25.03.2019, 12:58 by Lieyang Chen, Anthony Cruz, Steven Ramsey, Callum J. Dickson, José S. Duca, Viktor Hornak, David R. Koes, Tom Kurtzman

![](_page_29_Picture_11.jpeg)

![](_page_29_Picture_12.jpeg)

## Visualization

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_5.jpeg)

## Anatomy of a deep learning paper

### Strong empirical results

Post hoc theoretical explanation

-

![](_page_31_Picture_5.jpeg)

## Visualizing with Atomistic Probes

![](_page_32_Figure_2.jpeg)

## **Redocked Training Set**

![](_page_32_Picture_5.jpeg)

## Visualizing with Atomistic Probes

![](_page_33_Figure_2.jpeg)

**Crossdocked Training Set** 

![](_page_33_Picture_6.jpeg)

# Hydrogen Bonds... or Not

### **Receptor Atom Type**

![](_page_34_Figure_3.jpeg)

## **Redocked Training Set**

![](_page_34_Picture_6.jpeg)

![](_page_34_Picture_7.jpeg)

# Hydrogen Bonds... or Not

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_5.jpeg)
# Hydrogen Bonds... or Not





### Oxygen Acceptor

## Visualizing with Atomistic Probes

### Nitrogen Acceptor





# Visualizing with Atomistic Probes



### Aliphatic Carbon

### Aromatic Carbon







## Oxygen Donor/Acceptor

## Visualizing with Atomistic Probes



### Nitrogen Donor





## Oxygen Donor/Acceptor

## Visualizing with Atomistic Probes



### Nitrogen Donor





## Visualizing Network Decisions





### masking





### **layer-wise relevance**

### gradients



## Visualizations



### Masking





LRP

### Gradients



### **Computational and Systems Biology**





# Masking: Enzyme Mutants







### Partially Aligned Poses



# Layer-wise Relevance





### On Pixel-Wise Explanations for Non-Linear Classifier **Decisions by Layer-Wise Relevance Propagation**

Sebastian Bach 💿 🖾, Alexander Binder 💿, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller 🖾, Wojciech Samek 🖾

Published: July 10, 2015 • https://doi.org/10.1371/journal.pone.0130140







# | 2×| 2×| 2×32

# Convolution 3×3×3

Rectified Linear Unit

| 2×| 2×| 2×64

## Pooling Max 2×2×2

6x6x6x64

# Convolution 3×3×3

Rectified Linear Unit

6×6×6×128

Pseudo-Huber Loss

Softmax+Logistic Loss

Fully Connected

Fully Connected

**Computational and Systems Biology** 









# Gradients

















https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

# Gradients













### **University of Pittsburgh**







### **University of Pittsburgh**







# Screening with Pseudo Ligands





Mult

Threshold





# Gradients: Beyond Scoring

### Less Oxygen Here

## $\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$







# Gradients: Beyond Scoring

### Less Oxygen Here

## $\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$



## Iterative Refinement







## Iterative Refinement









## Iterative Refinement

















### **University of Pittsburgh**





| gnina                                                                         |                            |                  |                 |              |
|-------------------------------------------------------------------------------|----------------------------|------------------|-----------------|--------------|
| gnina is not smina/vina                                                       |                            |                  |                 | $\mathbb{N}$ |
| cheminformatics                                                               | computational-chemistry    | drug-discovery   |                 |              |
| 🛑 C++ 🔺 35 🛛 😵                                                                | 26 Updated 11 days ago     |                  |                 |              |
|                                                                               |                            |                  |                 |              |
| scripts                                                                       |                            |                  |                 |              |
| <b>scripts</b><br>Jupyter Notebook                                            | ★1 ¥°13 ₫≊BSD-3-           | Clause Updated o | on Sep 17, 2018 | h            |
| Scripts<br>Jupyter Notebook<br>models                                         | ★1 ¥°13 Ճ <u>†</u> ∆BSD-3- | Clause Updated o | on Sep 17, 2018 | h            |
| <b>scripts</b> <ul> <li>Jupyter Notebook</li> </ul> models Trained caffe mode | ★1 ¥13 ₫∆ BSD-3-           | Clause Updated o | on Sep 17, 2018 | h            |







# libmolgrid

### **Caffe Training**



### **PyTorch Training**



### **GPU Performance**

### **GPU Memory Utilization** (MB) 150 2000-Memory 1500-Model 1000-Total Wall Time ( 22 50 51 50 Maximum 500 0 PyTorch Caffe Caffe PyTorch Keras Keras Dgithub.com/gnina/libmolgrid

**Keras Training** 



```
e = molgrid.ExampleProvider(balanced=True, shuffle=True)
e.populate('examples.txt')
```

```
gmaker = molgrid.GridMaker()
```

```
batch = e.next_batch(batch_size)
gmaker.forward(batch, input_tensor,
          random_translation=0, random_rotation=True)
```







## Case Studies


## Case 1: Profilin-Actin



F





## Profilin

- Actin-binding protein
- Accelerates actin polymerization in presence of proline-rich proteins (e.g. formin, WASP, VASP)
- Sequesters actin otherwise



Dave Gau



Partha Roy



- Whole protein docking of early hit
- Identified 5 sites
- Pharmacophore screen (Pharmit)
- Ranked with Vina and CNN





### 57 compounds tested, 3 actives identified









## 57 compounds tested, **3 actives** identified

### 1 (Vina) didn't work in cells









### 57 compounds tested, **3 actives** identified

### 1 (Vina) didn't work in cells

### All predicted to bind to different sites









#### 10 uM

#### 50 uM

#### 100 uM





## Case 2: TIGIT





## Can we block TIGIT/ PVR interaction with a small molecule?



#### The Immunoreceptor TIGIT Regulates Antitumor and Antiviral CD8<sup>+</sup> T Cell Effector Function

Robert J. Johnston,<sup>1</sup> Laetitia Comps-Agrar,<sup>2</sup> Jason Hackney,<sup>3</sup> Xin Yu,<sup>1</sup> Mahrukh Huseni,<sup>4</sup> Yagai Yang,<sup>5</sup> Summer Park,<sup>6</sup> Vincent Javinal,<sup>5</sup> Henry Chiu,<sup>7</sup> Bryan Irving,<sup>1</sup> Dan L. Eaton,<sup>2</sup> and Jane L. Grogan<sup>1,\*</sup>





## Does anything bind to this pocket?



#### Fragment Docking



#### Pharmacophore Search



Consensus Scoring (CNN and Vina)







## Screening

# 10 diverse compounds selected for screening top ranked by Vina top ranked by CNN

| Name        | CNN Affinity | CNN Score | Vina     |  |
|-------------|--------------|-----------|----------|--|
| Compound 1  | 7.69807      | 0.994763  | 85.95    |  |
| Compound 2  | 5.57909      | 0.0180277 | -8.12632 |  |
| Compound 3  | 6.73692      | 0.0624742 | -9.81935 |  |
| Compound 4  | 6.87897      | 0.953488  | -3.81378 |  |
| Compound 5  | 6.32813      | 0.209807  | -8.60293 |  |
| Compound 6  | 5.689        | 0.0437    | -8.991   |  |
| Compound 7  | 4.368        | 0.022     | -9.34722 |  |
| Compound 8  | 4.81         | 0.072     | -6.81787 |  |
| Compound 9  | 5.22         | 0.032     | -6.264   |  |
| Compound 10 | 6.67         | 0.361     | 6.1053   |  |





But...

Lold Induction 1.0-1 1.0-1 0.5-

2.0

1.5-

Fold Induction



The first trial was promising, but the maximum does was limited by DMSO concentration. Future trials at appropriate dosages showed no response.









### But...

#### **Computational and Systems Biology**







## Case 3: Mystery Target





## Screening Hits

- 50 compounds tested
- designed against 3 putative allosteric pockets
- 4 hits (3 from P2, 1 from P4)
- P2 was potentially a very desirable pocket to hit for target-specific reasons



## Screening Hits

- 50 compounds tested
- designed against 3 putative allosteric pockets
- 4 hits (3 from P2, 1 from P4)
- P2 was potentially a very desirable pocket to hit for target-specific reasons





| MolPort ID | CNNScore | -Vina    | -GlideXP | cnn_rank | vina_rank | glide_rank | sum_rank |
|------------|----------|----------|----------|----------|-----------|------------|----------|
|            | 7.35853  | 9.73614  | 6.68     | 3.0      | 5.0       | 7.5        | 15.5     |
|            | 6.36562  | 9.25733  | 6.56     | 4.0      | 7.0       | 9.0        | 20.0     |
|            | 6.14087  | 8.73366  | 6.94     | 6.0      | 12.0      | 5.0        | 23.0     |
|            | 5.66284  | 9.40722  | 6.76     | 13.0     | 6.0       | 6.0        | 25.0     |
|            | 6.02615  | 8.82225  | 6.21     | 7.0      | 8.0       | 13.0       | 28.0     |
|            | 5.32736  | 10.18550 | 6.51     | 14.0     | 4.0       | 10.0       | 28.0     |
|            | 5.80743  | 7.26154  | 8.24     | 10.0     | 18.0      | 1.0        | 29.0     |
|            | 5.93622  | 8.75104  | 6.38     | 8.0      | 11.0      | 11.0       | 30.0     |
|            | 6.20744  | 6.18992  | 6.68     | 5.0      | 19.0      | 7.5        | 31.5     |
|            | 5.06070  | 10.32670 | 5.20     | 15.0     | 1.0       | 16.0       | 32.0     |
|            | 4.77866  | 10.32050 | 5.32     | 16.0     | 2.0       | 15.0       | 33.0     |
|            | 5.72094  | 8.76388  | 6.24     | 11.0     | 10.0      | 12.0       | 33.0     |
|            | 7.55155  | 8.26183  | 4.26     | 1.0      | 15.0      | 18.0       | 34.0     |
|            | 3.84854  | 10.19640 | 5.99     | 18.0     | 3.0       | 14.0       | 35.0     |
|            | 4.29961  | 7.43586  | 8.18     | 17.0     | 17.0      | 3.0        | 37.0     |
|            | 3.34137  | 7.79760  | 8.21     | 19.0     | 16.0      | 2.0        | 37.0     |
|            | 2.77562  | 8.26298  | 8.17     | 20.0     | 14.0      | 4.0        | 38.0     |
|            | 5.70688  | 8.80796  | 4.77     | 12.0     | 9.0       | 17.0       | 38.0     |
|            | 5.92500  | 8.53183  | 4.25     | 9.0      | 13.0      | 19.0       | 41.0     |
|            | 7.52880  | 6.05508  | 3.26     | 2.0      | 20.0      | 20.0       | 42.0     |

But

### Sorry to be the bearer of potentially bad news but ... it seems that there may have been some interference (quenching of the product) fluorophore) with the compounds/samples.





But

### Sorry to be the bearer of potentially bad news but ... it seems that there may have been some interference (quenching of the product fluorophore) with the compounds/samples.

## But but...

Thermal shift assays show binding







But...

### Sorry to be the bearer of potentially bad news but ... it seems that there may have been some interference (quenching of the product fluorophore) with the compounds/samples.

## But but...

Thermal shift assays show binding



## But but but...

### Those error bars







## Case 4: DUSP6



#### **University of Pittsburgh**

## Dual specificity phosphatase 6



DOI: 10.1158/1535-7163.MCT-07-2165 Published February 2008

Znosko, Thomas E Smithgall, Ivet Bahar, John S Lazo, Billy W Day & Michael Tsang 🏁



#### In Vivo Structure–Activity Relationship Studies Support Allosteric Targeting of a Dual Specificity Phosphatase

Vasiliy N. Korotchenko, Manush Saydmohammed, Laura L. Vollmer, Ahmet Bakan, Kyle Sheetz, Karl T. Debiec, Kristina A. Greene, Christine S. Agliori, Ivet Bahar, Billy W. Day,



Andreas Vogt **Students:** Aaron Zheng Tamar Skaist Maya AlMoussa

#### olecular Cancer Therapeutics

0 Advanced Search

A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected













34 compounds tested at the highest possible concentration (300 µM or 75  $\mu$ M depending on solubility) and 1/10 that

24 hour exposure

Stain for phospho-ERK

Selected hits with >1.5-fold increase in pERK over DMSO

Of the **six** visually **possibles**, three were from the Maya (BCI1) and three from the Ahmet site (BCI4)

5 hits selected by Vina and 1 by the CNN



## Possible positives





**PKC** activator



## Possible positives













## Possible positives

















## Generative Modeling





## **Discriminative Model**

#### Features X -



**Computational and Systems Biology** 





## Generative Model

### Features X







## Generative Model





**Computational and Systems Biology** 





## Generative Model





**Computational and Systems Biology** 

### → Features X





## Generative Adversarial Networks

#### True Examples







#### Generator





#### **University of Pittsburgh**

## Generative Adversarial Networks



#### 2015

#### 2016

lan Goodfellow @goodfellow\_ian · 2h 4.5 years of GAN progress on face generation. arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

#### https://thispersondoesnotexist.com









## Generative Models

Generative models approximate a data distribution directly. They can map samples from one distribution (noise or input data) to realistic samples from an output distribution of interest.



noise sample

generated receptor & ligand grid




# Autoencoding



#### Encoder





#### **Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules**

Hirzel<sup>†</sup>, Ryan P. Adams<sup>∇I</sup>, and Alán Aspuru-Guzik<sup>\*‡⊥</sup> (1)













## Variational Autoencoding Examples





### Atom Fitting







# Variational Autoencoding Examples



| t density | Fit structure | Gen. L2<br>distance | Fit L2<br>distance   | Fit RMSD |
|-----------|---------------|---------------------|----------------------|----------|
|           |               | 9. <b>405</b> 3     | 8.3141               | 0.6160   |
|           |               | 13.8545             | 9.7198               | 0.8820   |
|           |               | 14.8525             | 12.5245              | 1.2066   |
|           |               | 11.4730             | 9 <mark>.0564</mark> | 0.6725   |



83



### http://people.eecs.berkeley.edu/~pathak/context\_encoder/

# Context Encoding







receptor grid

**Computational and Systems Biology** 

# Context Encoding



generated ligand grid







# Conditioning on the Receptor



86



# Conditioning on the Receptor



86



#### Generated

#### 1m5w

#### Fit Densities





#### Generated

#### 1m5w

#### Fit Densities





Generated

3bxg

#### Fit Densities





Generated

3bxg

#### Fit Densities





Generated

3ebp

#### Fit Densities





Generated

3ebp

#### Fit Densities



# Acknowledgements



Jocelyn Sunseri



#### Hunter Haaf



#### Paul Francoeur



Josh Hochuli



#### Rachel Rosenzweig



Keshavan Seshadri





Matt Ragoza



Alec Helbling





Department of Computational and Systems Biology

National Institute of General Medical Sciences R01GM108340











## Do I have more time? Do you care about chemistry education?



93

# Molecular Active Learning



Contents lists available at ScienceDirect

Computers & Education

journal homepage: www.elsevier.com/locate/compedu

#### A meta-analysis of the effects of audience response systems (clicker-based technologies) on cognition and affect



Nathaniel J. Hunsu<sup>\*</sup>, Olusola Adesope, Dan James Bayly

Educational Leadership, Sport Studies, Educational and Counseling Psychology, Washington State University, Pullman, WA 99164-4530, USA

"Overall, we found small but significant effects of using ARS-based technologies on a number of desirable cognitive and non-cognitive learning outcomes."

Go to this URL: <u>http://3dmol.csb.pitt.edu/viewer.html</u>





# github.com/gnina github.com/3dmol http://bits.csb.pitt.edu @david\_koes







# github.com/gnina github.com/3dmol http://bits.csb.pitt.edu @david\_koes





