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O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461
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Scoring
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scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf 
Model. 2013 Aug 26;53(8):1893-904. 
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https://www.ncbi.nlm.nih.gov/pubmed/23379370
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Protein-Ligand Scoring
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Pose Prediction

Binding 
Discrimination

Affinity Prediction
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, 
a feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.
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Convolutional Neural Networks
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Convolutional Filters
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(R,G,B) pixel
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Protein-Ligand Representation
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Why Grids?
Pros 

• clear spatial relationships 

• amazingly parallel 

• easy to interpret

 12

Cons 

• coordinate frame dependent 

• pairwise interactions not explicit

≠
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Data Augmentation
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Data Augmentation
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Training

 14

PDBbind 2016 refined set 
• 4056 protein-ligand complexes 
• diverse targets 
• wide range of affinities 
• generate poses with AutoDock Vina 
• include minimized crystal pose 

Pocketome  
• 2923 distinct pockets 
• 27,142 receptor structures 
• 4,138,117 non-redundant poses 
• generate poses with AutoDock Vina 
• include minimized crystal pose 

Redocked Training Set Crossdocked Training Set
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Training
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Target sequence similarity < 0.5 
AND 

Ligand similarity < 0.9
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Optimized Models
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Pose Results
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Pose Results
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Affinity Results
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Clustered Cross Validation



University of Pittsburgh Computational and Systems Biology

Affinity Results
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Flexible Docking Scoring

 21Rocco Meli
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Virtual Screening
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Virtual Screening
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Virtual Screening
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Visualization
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Visualizing with Atomistic Probes
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Redocked Training Set
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Visualizing with Atomistic Probes
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Crossdocked Training Set



University of Pittsburgh Computational and Systems Biology

Hydrogen Bonds... or Not
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Redocked Training Set
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Hydrogen Bonds... or Not

 28
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Hydrogen Bonds... or Not
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Redocked Training Set
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Visualizing with Atomistic Probes

 29

Oxygen Acceptor Nitrogen Acceptor



University of Pittsburgh Computational and Systems Biology

Visualizing with Atomistic Probes
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Aliphatic Carbon Aromatic Carbon
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Visualizing with Atomistic Probes
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Oxygen Donor/Acceptor Nitrogen Donor
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Visualizing with Atomistic Probes
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Oxygen Donor/Acceptor Nitrogen Donor
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Visualizing Network Decisions
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masking gradientslayer-wise relevance

1UGX
Score: 0.62
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Visualizations
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2IDZ
Score: 0.04

3EJT
Score: 0.92

Masking GradientsLRP
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Masking
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Masking:  Enzyme Mutants
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Pose Sensitivity
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3COY 2QMJ 3OZT

Partially Aligned Poses 
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Layer-wise Relevance
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Pose Score: 0.988
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Deep Dreams of Molecules
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Deep Dreams of Molecules
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Screening with Pseudo Ligands
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Gradients: Beyond Scoring
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2Q89

More Oxygen Here

Less Oxygen Here
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Gradients: Beyond Scoring
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2Q89

More Oxygen Here

Less Oxygen Here
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Minimizing Low RMSD Poses

better worse
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Iterative Refinement
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Iterative Refinement
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Iterative Refinement
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libmolgrid
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Keras TrainingPyTorch TrainingCaffe Training

GPU Performance GPU Memory Utilization
e = molgrid.ExampleProvider(balanced=True,shuffle=True) 
e.populate('examples.txt')

gmaker = molgrid.GridMaker()

batch = e.next_batch(batch_size)
gmaker.forward(batch, input_tensor,  

random_translation=0, random_rotation=True)
   

github.com/gnina/libmolgrid

http://github.com/gnina
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Case Studies
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Case 1: Profilin-Actin
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Dave Gau Partha Roy

• Actin-binding protein 
• Accelerates actin polymerization in 

presence of proline-rich proteins 
(e.g. formin, WASP, VASP) 

• Sequesters actin otherwise

PPPPP

Actin

Profilin

Profilin
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Virtual Screen

 53

• Whole protein docking of early hit 

• Identified 5 sites 

• Pharmacophore screen (Pharmit) 

• Ranked with Vina and CNN
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DMSO

C73

C74

C76

Results

 54

57 compounds tested, 3 actives identified

Vina
CNN

1 uM 10 uM 50 uM 100 uM

DMSO C73

C74
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DMSO

C73

C74

C76

Results

 54

57 compounds tested, 3 actives identified

1 (Vina) didn't work in cells Vina
CNN

1 uM 10 uM 50 uM 100 uM

DMSO C73

C74
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DMSO

C73

C74

C76

Results

 54

57 compounds tested, 3 actives identified

1 (Vina) didn't work in cells

All predicted to bind to different sites

Vina
CNN

1 uM 10 uM 50 uM 100 uM

DMSO C73

C74
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Case 2: TIGIT
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Can we block TIGIT/
PVR interaction with a 
small molecule?

small 
molecule

Gibran Biswas
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Does anything bind to this pocket?

Fragment Docking

Pharmacophore Search

Consensus Scoring (CNN and Vina)



Screening
10 diverse compounds 
selected for screening 
• top ranked by Vina 
• top ranked by CNN 

Name CNN	Affinity CNN	Score Vina

Compound	1 7.69807 0.994763 85.95

Compound	2 5.57909 0.0180277 -8.12632

Compound	3 6.73692 0.0624742 -9.81935

Compound	4 6.87897 0.953488 -3.81378

Compound	5 6.32813 0.209807 -8.60293

Compound	6 5.689 0.0437 -8.991

Compound	7 4.368 0.022 -9.34722

Compound	8 4.81 0.072 -6.81787

Compound	9 5.22 0.032 -6.264

Compound	10 6.67 0.361 6.1053



Results
	

TIGIT:CD155 Interaction
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But...
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The first trial was promising, but 
the maximum does was limited 
by DMSO concentration.  Future 
trials at appropriate dosages 
showed no response.

Compound 1

Compound 1

Compound 1

Compound 1
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But...
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Case 3: Mystery Target

 62



Approach
unbiased	MD	
simulations

select	receptor	using	pocket	
volume/druggability

pharmacophore	query	
from	fragment	docking

filters:	
energy	

minimized	RMSD	
Lipinski	
PAINS

hits

CNN Vina GlideXP

minimization	w/Vina

pocket	identification	
(mdpocket) consensus	scoring

best	min-rank best	max-rank

sort	by	sum-rank

HBD	<=	5	
HBA	<=	10	
MW	<=	500	
logP	<=	5

select	~20	final	hits	per	
pocket

diversity	filter	
at	most	2	cmpds	w/
Tanimoto	>	0.7



Screening Hits

• 50	compounds	tested	
• designed	against	3	putative	
allosteric	pockets	

• 4	hits	(3	from	P2,	1	from	P4)	
• P2	was	potentially	a	very	
desirable	pocket	to	hit	for	
target-specific	reasons
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P2 MolPort ID CNNScore -Vina -GlideXP cnn_rank vina_rank glide_rank sum_rank

0 MolPort-029-885-040 7.35853 9.73614 6.68 3.0 5.0 7.5 15.5

1 MolPort-004-165-186 6.36562 9.25733 6.56 4.0 7.0 9.0 20.0

2 MolPort-004-451-143 6.14087 8.73366 6.94 6.0 12.0 5.0 23.0

3 MolPort-000-784-105 5.66284 9.40722 6.76 13.0 6.0 6.0 25.0

4 MolPort-030-019-066 6.02615 8.82225 6.21 7.0 8.0 13.0 28.0

5 MolPort-002-355-857 5.32736 10.18550 6.51 14.0 4.0 10.0 28.0

6 MolPort-004-985-464 5.80743 7.26154 8.24 10.0 18.0 1.0 29.0

7 MolPort-000-781-345 5.93622 8.75104 6.38 8.0 11.0 11.0 30.0

8 MolPort-029-885-370 6.20744 6.18992 6.68 5.0 19.0 7.5 31.5

9 MolPort-016-630-279 5.06070 10.32670 5.20 15.0 1.0 16.0 32.0

10 MolPort-010-794-811 4.77866 10.32050 5.32 16.0 2.0 15.0 33.0

11 MolPort-027-890-372 5.72094 8.76388 6.24 11.0 10.0 12.0 33.0

12 MolPort-003-138-769 7.55155 8.26183 4.26 1.0 15.0 18.0 34.0

13 MolPort-019-811-754 3.84854 10.19640 5.99 18.0 3.0 14.0 35.0

14 MolPort-027-833-331 4.29961 7.43586 8.18 17.0 17.0 3.0 37.0

15 MolPort-000-751-314 3.34137 7.79760 8.21 19.0 16.0 2.0 37.0

16 MolPort-000-833-093 2.77562 8.26298 8.17 20.0 14.0 4.0 38.0

17 MolPort-002-723-211 5.70688 8.80796 4.77 12.0 9.0 17.0 38.0

18 MolPort-005-817-595 5.92500 8.53183 4.25 9.0 13.0 19.0 41.0

19 MolPort-007-710-257 7.52880 6.05508 3.26 2.0 20.0 20.0 42.0

6µM

52µM

102µM
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Sorry	to	be	the	bearer	of	poten>ally	bad	news	but	...	it	seems	that	
there	may	have	been	some	interference	(quenching	of	the	product	
fluorophore)	with	the	compounds/samples.	

But...
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Dual specificity phosphatase 6 
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Andreas Vogt 
Students:

Aaron Zheng 
Tamar Skaist 

Maya AlMoussa
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BCI 1- Maya’s Site 
Drug score = 0.14 

BCI 2- Tamar’s Site 
Drug score = 0.9 

BCI 4 - Ahmet’s Site 
Drug score = 0.02
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Results
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34 compounds tested at the highest possible concentration (300 µM or 75 
µM depending on solubility) and 1/10 that 

24 hour exposure 

Stain for phospho-ERK 

Selected hits with >1.5-fold increase in pERK over DMSO 

Of the six visually possibles, three were from the Maya (BCI1) and three 
from the Ahmet site (BCI4) 

5 hits selected by Vina and 1 by the CNN
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Possible positives
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DMSO 25	µM	BCI215 1	µg/ml	TPA 300	µM	C15 300	µM	C17

O

NH
Br

PKC	activator

Vina Vina
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Possible positives
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DMSO

25	µM	BCI215

300	µM	D11 300	µM	J23 300	µM	K03

Vina CNN Vina
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Possible positives

 73

DMSO 25	µM	BCI215 1	µg/ml	TPA

75	µM	C23 7.5	µM	C22

75	µM	C23,	enlarged

Vina
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Generative Modeling
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Discriminative Model
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Features X Prediction y
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Generative Model
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Features X

y?
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Generative Adversarial Networks
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Generator

Discriminator

True Examples
Loss

Is this a 
real dog 
picture?
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Generative Adversarial Networks

 78https://thispersondoesnotexist.com
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Generative Models
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noise sample generated receptor & ligand grid

Generative models approximate a data distribution directly. They can 
map samples from one distribution (noise or input data) to realistic 
samples from an output distribution of interest.
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Autoencoding
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Latent 
Space

GeneratorEncoder L2 Loss
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Autoencoding
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Latent 
Space

GeneratorEncoder L2 Loss
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Variational Autoencoding Examples
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2BES

VAE Atom 
Fitting
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Variational Autoencoding Examples
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Context Encoding

 84http://people.eecs.berkeley.edu/~pathak/context_encoder/
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Context Encoding
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receptor grid generated ligand grid

GAN loss
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Conditioning on the Receptor
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Conditioning on the Receptor
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Context Encoding with Fully Convolutional Network
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1m5w

Generated Fit Densities Fit Atoms
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Context Encoding with Fully Convolutional Network
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1m5w

Generated Fit Densities Fit Atoms
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Context Encoding with Fully Convolutional Network
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3bxg

Generated Fit Densities Fit Atoms
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Context Encoding with Fully Convolutional Network
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3bxg

Generated Fit Densities Fit Atoms
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Context Encoding with Fully Convolutional Network

 89

3ebp

Generated Fit Densities Fit Atoms
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Context Encoding with Fully Convolutional Network
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3ebp

Generated Fit Densities Fit Atoms
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Do I have more time? 
Do you care about chemistry education?
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Molecular Active Learning
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Go to this URL: http://3dmol.csb.pitt.edu/viewer.html

“Overall, we found small but significant effects of 
using ARS-based technologies on a number of desirable 
cognitive and non-cognitive learning outcomes.”

http://3dmol.csb.pitt.edu/viewer.html?cid=101561&select=all&style=stick
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github.com/gnina

http://bits.csb.pitt.edu
@david_koes

github.com/3dmol

http://github.com/gnina
http://bits.csb.pitt.edu
http://github.com/3dmol


University of Pittsburgh Computational and Systems Biology

 95

github.com/gnina

http://bits.csb.pitt.edu
@david_koes
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