We previously developed GNINA'-3, a deep learning framework for molecular docking that uses a three-
dimensional grid-based atom density representation of protein-ligand complexes as input (3DCNN).
Here we extend this work to de novo drug design by training models that output this atomic density
representation. We utilize deep generative models, such as variational autoencoders (VAE) and generative
adversarial networks (GANs) to learn a latent space of 3D molecular conformations. We can sample novel
molecular geometries from this latent space.

Purpose
Generation of 3D molecules using 3DCNN and confirmation of “proof of concept”
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« We succeeded in reproducing 3D molecules using 3DCNN,
although it’ s a challenging task to reproduce molecules without any assumptions
« Improvement of fitting is desirable to reproduce molecules without any assumptions

>Variational Autoencoder
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rigid body alignment
values in parentheses represent similarity, QED of a target molecule, and QED of a generated one, respectively

* Molecules similar to the target molecule were successfully generated

« Relatively small molecules are generated (especially in random case)
- The use of larger data set is considered to leads to highly diverse molecules
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1. Larger dataset for acquiring more diverse molecules <preliminary result>

2. Improvement of “Density to Structure” [ ’
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4. Application to protein-ligand systems P _ > id - ou
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We confirmed proof of concept on molecular generation based on 3DCNN.

We succeeded in generating 3D molecules directly both around the target ones (posterior distribution)
and based on random noise (prior distribution) .

There is room to improve the method of atom fitting and bond adding. The use of even larger data set
is strongly desirable to generate a variety of molecules.

Reference

1. Ragoza M HoctulJ robo, £ Sunsart, J: Kges, D. R rain-Ligand Seoing wih Comvolutona Newal
s,

57, 942-957.
2. Sunseri, J. Koes, D. R libmolgrid: GPU Accelerated Molecular Griding for Deep Learning Applications.

anXiv preprint arXiv:1912.04822 2019

3. Francoeur, P G Tomohide, M: Koes. D. R. 30 Convolutional Neural Networks and a CrossDocked Dataset for
Structure-Based Drug Design. ChemRxiv. Preprint (https://doi org/10.26434/ chemrxiv.11833323v1)

Acknowledgement

This research was supported by RO1GM108340 from the National Institute of
General Medical Sciences, Toray Industries, Inc., and contributions from NVIDIA
Corporation, the University of Pittsburgh Center for Research Computing, and the
Extreme Science and Engineering Discovery Environment (XSEDE) .




