

Computational Drug Discovery

David Ryan Koes 4/13/2020

https://zoom.us/j/91851697782

http://bits.csb.pitt.edu

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

- 1. Does the compound do what you want it to?
- Does the compound **not** do what you **don't** want it to?
- 3. Is what you want it to do the right thing?

Drug Discovery

Computational Drug Discovery

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score
- simulation

ADMET

Absorption Distribution Metabolism Excretion Toxicity

Will this be a usable drug?

Screening for ADMET:

Cytochrome P450 interaction Lipinksi's Rule of Five QSPR: Quantitative Structure Property Relationship

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore
- **Receptor Based**
 - dock and score

Ligand Based: Similarity

Fingerprint Methods

- map molecules to a descriptor space:

1D: molecule weight, #h-bonds, etc. 2D: paths, bond distances between atom-pairs

- similarity is "distance" between descriptors
- for bit vectors, Tanimoto distance used

$$T(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

Topological Fingerprints

ECFP4

- all substructures with diameter 4 around every atom

Ligand Based: QSAR

Quantitative Structure/Activity Relationships

	Cmpd Number	Cmpd Name	X	Log EC ₅₀	п	Calculated Log EC₅₀	Residual
	1	6a	Н	1.07	0	0.79	0.28
	2	6b	Cl	0.09	0.71	0.21	-0.12
	3	6d	NO ₂	0.66	-0.28	1.02	-0.36
•	4	бе	CN	1.42	-0.57	1.26	0.16
	5	6f	C ₆ H ₅	-0.62	1.96	-0.81	0.19
	6	6g	N(CH ₃) ₂	0.64	0.18	0.65	-0.01
	7	6h	I	-0.46	1.12	-0.12	-0.34

Properties

Biological Activity = Learned linear function of properties 3D-QSAR: includes geometric/structural properties

meta-QSAR

Profile-QSAR: A Novel meta-QSAR Method that Combines Activities

across the Kinase Family To Accurately Predict Affinity, Selectivity,

AND MODELING

and Cellular Activity

Computational and Systems Biology

pubs.acs.org/jcim

Journal of Chemical Information and Modeling ARTICLE $K_1 + K2 + K3$ Knew Kn a) **Experimental K X C Matrix b**) c) K₁ K₂ K₃ ... K₁₁₅ C1 C2... C3 C4 PLS C5 Knew C6 ... C1 C7 ... C2pIC50s ... C3 C105 C4 **Upto 5 Binary Bayesian** C5 **QSARs** Per Kinase C6 **C7** ... C1 ... C10³ C2••• C3 ... C4 PLS ... C5 ... C6 ... C7 Dataset Size >> C10 Synthetic K X C Matrix of Bayesian Prediction

meta-QSAR

pubs.acs.org/jcim

Profile-QSAR: A Novel meta-QSAR Method that Combines Activities across the Kinase Family To Accurately Predict Affinity, Selectivity, and Cellular Activity

Journal of Chemical Information and Modeling

AND MODELING

ARTICLE

+ K2 + K3 K₁ **K**_{new} a) Kn a) R²_{ext} (25% test set) vs. Kinase Assays 0.9 0.8 0.7 0.6 ext 0.5 Knew צ 0.4 C1 0.3 C2C3 СМОС 0.2 C4 0.1 C5 0 **C6** C7 →PQ → Bayes 115 Kinase Assays >> $C10^3$ C3 ... C4 PLS ... C5 ... C6 ... C7 C10

Dataset Size >>

Synthetic K X C Matrix of Bayesian Prediction

Ligand Based: Similarity

Superposition Methods

- compute "overlap" between molecules
- consider shape, electrostatics, pharmacophores

Ligand/Receptor Based: Pharmacophore

Pharmacophore:

IUPAC: The ensemble of steric and electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

Common Features:

aromatic ring hydrophobic area positive ionizable negative ionizable hydrogen bond donor hydrogen bond acceptor

Pharmacophore Features

Charge-Charge

Charge-Charge

Inhibitor of the influenza virus neuraminidase (antiviral agent)

Hydrogen Bond

Hydrogen Bond

Distance: D-A: $2.5\text{\AA} - 3.5\text{\AA} (4.0\text{\AA}?)$ H-A: $1.5\text{\AA} - 2.5\text{\AA}$ Angle: Depends on context

Turkey Ovomucoid Inhibitor

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

Aromatic

Aromatic

http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch11/benzene-mo.jpg

Aromatic

Rings offset Interplanar distance: 3.3-3.8Å

Human liver glycogen phosphorylase a complexed with caffeine

University of Pittsburgh

Computational and Systems Biology

http://pharmit.csb.pitt.edu

Kinds of Virtual Screening

ADMET

Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

Receptor Based

- dock and score

Pharmacophores Aren't Enough

Pharmacophores Aren't Enough

.2µM

50µM

Docking

Determine the **conformation** and **pose** of a ligand at a docking site

Challenge is to find conformation and pose with the best **score**

Two Phase Docking

1. Global Pose Estimation

2. Local Refinement

Two Phase Docking

1. Global Pose Estimation

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Speed

Scoring Goals

Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination

-does it bind?

Pose Prediction

-how does it bind?

Speed

Approximations:

Rigid or semi-rigid receptor Implicit water model

Scoring Types

Force-field based

inter- and intra- molecular forces van der Waals, electrostatic, torsional

Empirical

parameterized function is fit to binding energy data

Knowledge based

scoring function based on known structure, not physical principles

Consensus

Force Field: Dock 4.0

Coulomb's Law q: partial charges D: dielectrict constant

Empirical: AutoDock Vina

Weight	Term
-0.0356	gauss ₁
-0.00516	gauss ₂
0.840	Repulsion
-0.0351	Hydrophobic
-0.587	Hydrogen bonding
0.0585	N _{rot}

Knowledge Based: RF-Score

Pairwise Distance Counts (<12Å)

Protein

Vol. 26 no. 0 2010, pages 1160-1175 ORIGINAL PAPER doi: 19.1093/biol-documete-s/54, 112

Structural bioinformatics

Advance Access sublection March 17, 2012

A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking

Pedro J. Ballester^{1, *,*} and John B. O. Mitchel^{2,*}

Unitseer Centre for Molecular Science Informatics, Department of Cremistry, University of Cembroge, Level et al. Boad, Cembridge CB2 1EW and ²Centre for Riemolecular Sciences, University of St Anonews, North Haugh, St Andrews KY18 9ST, UK Associate Editor: Burkhard Post

මාණ මා මා

aaabb

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Key Idea: Leverage "big data" 231,655,275 bioactivities in PubCher

- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind

Machine Learning

Features $X \rightarrow Model \rightarrow y$ Prediction

Neural Networks

Neural Networks

The universal approximation theorem

states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

Deep Learning

Image Recognition

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

(R,G,B) pixel \rightarrow (Carbon, Nitrogen, Oxygen,...) **voxe** The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Model

Results

Affinity Prediction

Pose Prediction

Trained on PDBbind refined; tested on CSAR 🧐

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

https://deepdreamgenerator.com/#gallery

Related Work

MolecuLeNet: A continuous-filter convolutional neural network for modeling quantum interactions

Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller (Submitted on 26 Jun 2017)

Automatic chemical design using a data-driven continuous representation of molecules

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, Alán Aspuru-Guzik

(Submitted on 7 Oct 2016 (v1), last revised 6 Jan 2017 (this version, v2))

AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery

Izhar Wallach, Michael Dzamba, Abraham Heifets (Submitted on 10 Oct 2015)

ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost

Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg (Submitted on 27 Oct 2016 (v1), last revised 6 Feb 2017 (this version, v4))

Convolutional Networks on Graphs for Learning Molecular Fingerprints

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams (Submitted on 30 Sep 2015 (v1), last revised 3 Nov 2015 (this version, v2))

Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity

Joseph Gomes, Bharath Ramsundar, Evan N. Feinberg, Vijay S. Pande (Submitted on 30 Mar 2017)

Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules

Alessendro Lusci⁺⁺, Gianluce Pollastri⁺, and Pierre Beldi⁺[±] [†] School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Iroland [‡] Department of Computer Science, University of Celifornia, Irvine, Irvine, Celifornia 82697, United States

J. Chem. Int. Model, 2013, 52 (7), pp 1583–1575 DOI: 10.1021/si400167y Publication Date (Web): June 24, 2015

Low Data Drug Discovery with One-shot Learning

Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, Vijay Pande (Submitted on 19 Nov 2026)

Massively Multitask Networks for Drug Discovery

Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, Vijay Pande (Submitted on 6 Feb 2015)

Protein–Ligand Scoring with Convolutional Neural Networks

Matthew Regozett, Joshua Hochultt, Elisa Idrobo⁸, Jocelyn Sunserli, and David Ryan Kose¹ () [†]Department of Neuroscience, [‡]Department of Computer Science, [†]Department of Biological Sciences, and [†]Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States [§] Department of Computer Science, The College of New Jersey, Ewing, New Jersey 06628, United States

J. Cham. Inf. Model., 2017, 57 (4), pp 912–957 DOI: 10.1021/acs.joim.6b00740 Publication Date (Wap): April 3, 2017 Copyright © 2017 American Chemical Society

Case Study: Profilin-Actin

Profilin

- Actin-binding protein
- Accelerates actin polymerization in presence of proline-rich proteins (e.g. formin, WASP, VASP)
- Sequesters actin otherwise

Partha Roy

Profilin is important for angiogenesis

Ding, Z., Lambrechts, A., Parepally, M., and **Roy, P.**, 2006, "Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis.," Journal of cell science, vol.119, no.Pt 19, pp. 4127-37, 16968742.

Ding, Z., Gau, D., Deasy, B., Wells, A., and Roy, P., 2009, "Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells.," Experimental cell research, vol.315, no.17, pp. 2963-73, 19607826.
University of Pittsburgh

Interface Analysis

••	•) Pocket(Query		× +														
~	→ C	A No	t Secure	pocket	query.csb.p	itt.edu/	pocket.	html							\$	0 5	S :		
28TF: THE STRUCTURE OF CRYSTALLINE PROFILIN-BETA-ACTIN										Clusters									
		И		4					PDB	Ch	5z	Dist	AN LIG ^{PC}	AV AAG ^R	AV ASASA	A# ASASAS	Score -		
· · ·									2BTF	A	1	0	-1.45	2,278	105.41	60	0.837445		
	K 1								28TF	A	2	6.5314	-1.16	1.71285	98.595	55.55	0.699197		
	X^{-}			71					28TF	A	3	11.9756	-0.963353	1.2005	77.3467	46.7333	0.663568		
1 1								\	28TF	Α	3	8.1531	-1.2	1.2758	74.5667	43.3	0.543096		
1	1 6						2	1-	28TF	A	2	11.7347	-0.95	1.5458	73.34	42.85	0.542674		
	N 11		-		1			-	28TF	A	3	6.5314	-1.70333	0.695657	78.85	46.7657	0.640336		
1	-		-	1	1				28TF	Α	2	10.5754	-1.04	1,2259	70.63	44,55	0.539958		
-24		1	7	5		1			2BTF	A	2	8.1531	-1.385	1.34435	86.46	39.4	0.518174		
7		1	10	-	7		1		28TF	A	2	8.1585	-3.075	0.4042	82.775	61.55	0.616061		
	15	10	1	10	0		γ	- 10	28TF	Α	4	11,9756	-1.0575	1.00305	54.5375	39.75	0.513486		
X	TY	u	1	1		-	3	-	28TF	A	3	11.7252	-2.38333	0.541787	76.3957	55.7333	0.507079		
	1	1K	1	10	P	1		-	28TF	A	4	11.5673	-3.265	0.15435	\$8.865	47.25	0.6		
		F		1	and a		-	19	28TF	А	2	5,8411	-2.12	0.47115	72.885	44.6	0.5		
		•	6			h	1	1	28TF	Α	4	10.2709	-1.5975	0.625175	85.765	39.775	0.494526		
			a						28TF	Α	а	11,4961	-0.53	0.662633	76.51	43.6	0.492244		
1	1000	1-1						1 -	2BTF	Α	3	11.5573	-2.55	0.115467	65.4957	50.3333	0.479771		
-	5	-		14	-		-1	1	2BTF	A	3	10.5754	-1.12	0.954833	55.9233	35.9687	0.474501		
	1	1		1	Contraction of the second			1-	29TF	Α	а	8.4178	-3.75333	0.2598	68.1733	53.9657	0.470647		
Resid	ues V	iewer 8	Export	_					2BTF	A	4	11.9756	-0.555	0.458425	66.095	39.975	0.470249		
Res		∆G ^{re}	ΔΔG ^{II}	ASASA	ASASA%	SASA	Cons	Rate											
TYR	166	-0.87	1.15	90.78	51.10	12.35	1.00	0.57											
TYR	169	-1.45	2.28	106.41	60.00	10.79	0.72	2.46											
												~~ <	1 2 3	4 5 5	1 7 8	2 22			
										Res	lla		2	40 clusters	View	Cluster Av	eraces -		

Published online 20 May 2012

Macleic Acids Research, 2012, Vol. 40, Web Server isane W387-W392 doi:10.1693/narigks336

PocketQuery: protein-protein interaction inhibitor starting points from protein-protein interaction structure

David Ryan Koes* and Carlos J. Camacho

Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15250, USA

BIOINFORMATICS ORIGINAL PAPER

Vol. 26 no. 6 2012, pages 784–791 doi:10.1039/5/o/wformation/047717

Structural bioinformatics

Advance Access publication December 30, 2011

Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure

David Ryan Koes* and Carlos J. Carnacho

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, RA 15250, USA Associate Bitter, Vente Albecht,

Key Contacts

Y166 Y169 D286 R372 -0.9 ΔG -5.3 ΔG -1.5 ΔG -2.6 ΔG 73% ΔSASA% 51% ΔSASA% 60% ΔSASA% 72% ΔSASA%

Pocket Hunting

Fragment Docking

SOURCEFORGE smina Scoring and Minimization with AutoDock Vina Status: Beta Brought to you by: dkoes A Reviews

Dock **benzene** and **water** to structures extracted from molecular dynamics simulation

Pharmacophores

10 pharmacophores hydrophobic core + $\binom{5}{3}$ hbond features

Pharmacophore Search

http://pharmit.csb.pitt.edu/

Pharmit Search Engine X +					
← → C		☆	0 5	🧊 E	
Search MalPort	Pharmacopho	re Resu	its	0	
Pharmacophore Search -> Shape Filter	Name	RNSD *	Mass	RBnds	W443_W448 Nucleie Acids Research, 2016, Vol. 44, Web Server issue Published online 19 April
Land Facultary	NolPort-005-059-538	0.482	384	7	dat: 10.10930aNgew287
Loss Receptor Loss residires	NolPort-045-136-044	0.485	277	5 📼	Pharmit: interactive exploration of chemical space
Pharmacophore	NolPort-000-751-880	0.492	463	- 3	Jacobus Susperi and David Buas Kasa ¹
Aromatic	NolPort-000-751-880	0.492	403	3	Jocelyn Sunsen and David Hyan Koes
Hudunahahia	NolPort-000-209-646	0.495	459	6	Department of Computational and Systems Biology, University of Pftisburgh, 3601 Fifth Avenue, Pftisburgh, PA 15260, USA
• ON C+33472253 ladis L0	NolPort-000-761-880	0.495	403	3	Transford Sector 1
Hydrophobic o	NolPort-003-940-797	0.496	535	6	Pharmer: Efficient and Exact Pharmacophore Search
(-31.45,4 8,5.03) Recks 1.0	NolPort-000-761-880	0.499	403	3	David Ryan Koes't and Carlos J. Camachot
HydrogenAcceptor	NolPort-000-761-880	0.500	403	3	Department of Conputational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
HydrogenDonor	NelPort-000-761-880	0.501	403	3	J. Chem. Inf. Model, 2011, 51 (6), pp 1307–1314 DOI: 10.1021/ci200097m (T) BIR Citation (201
CN (123.1,7.4,5.42) Rate La	NolPort-000-788-174	0.502	505	4	Publication Date (Weo): May 23, 2011 Copyright © 2011 American Chemical Society
HydrogenDonor o	NolPort-046-068-060	0.505	333	7	E-mail: dkoes@pit.etu.
	NolPort-021-804-577	0.505	420	7	
Add O Sort O	NolPort-039-338-622	0.508	420	7	Condentational
Shape	NolPort-046-427-285	0.510	302	3	CHEMISTRY
Inclusive Shape	NolPart-020-216-891	0.512	313	4	
Exclusive Shape	NolPart-000-124-806	0.512	339	9	FullPaper
Filters	Showing	te 17 of	490 hits		Shape-based virtual screening with volumetric aligned molecular
Ht Reduction	Province 1	2.2	con ky	text	shapes
+ Ht Servening	Query to	ock 4.285	seconds		David Ryan Koes 👼, Carlos J. Camacho
Vieualization			/		First published: 22 July 2014 https://doi.org/10.1002/jcr.23690 Cited by 5
Load Session Save Session	Minim	ize S	ave		and how we had say a low three and the same how on a low of a

Refine and Consensus Score

Select 10 representative conformations from MD https://github.com/dkoes/md-scripts

Minimize with smina and Vina scoring function

Consensus score

Cluster_using OpenBabel FP2 fingerprints https://pymolwiki.org/index.php/ Cluster_mols

Select top ranked compounds, at most 2 from a cluster

20 Compounds Ordered

Compound	MolPort#	Structure									
č 1	MolPort-000-139-035	-0763	cs	MolPort-008-334-836	de Bod	C10	MolPort-010-765-977	asyo.	C15	MolPort-002-166-883	-24-
a	MolPort-000-139-027		C5	MolPort-002-806-727	~ chij	сц	MolPort-010-765-659	to pain	C16	MolPort-008-334-341	J.
a	MolPart-010-655-167	oga	67	McIPort-010-757-363		C12	MolPort-016-588-736	-0-0-0-0-0-	C1 7	MolPort-008-332-636	, ga
64	MolPort-008-332-724		сз	McIPort-010-757-388		C1 3	MolPort-001-827-841	550	C18	MolPort-002-964-477	
C20	MolPort-016-589-024	ంచ్రా	69	McIPort-007-694-167	and a second	C14	MolPort-002-323-861		C19	MolPort-016-588-896	ంచిస్తేం

20 Compounds Ordered

Compound	MolPort#	Structure								<u>^</u>
C1	MolPart-000-139-035		G	MolPort-008-334-836	C10	MolPort-010-765-977	an on	C15	MolPort-002-166-888	
a	MolPort-000-139-027		C5	McIPort-002-806-727	 сц	MolPort-010-765-659		C16	MolPort-008-334-341	
a	MolPort-010-655-167		67	McIPort-010-757-363	C12	MolPort-016-588-786	-03 4-0	G17	MolPort-008-332-635	
C4	MolPort-008-332-724		c3	McIPort-010-757-388	C1 3	MolPort-001-827-841	- C	C18	MolPort-002-964-477	
C20	MolPort-016-589-024		6	McIPort-007-694-167	C1 4	MolPort-002-323-861		C19	MolPort-016-588-896	o de la

Structure-based virtual screening identifies a small-molecule inhibitor of the profilin 1-actin interaction

Peceived for publication, July 27, 2017, and in revised form, December 8, 2017. Published, Papers in Press, December 27, 2017, DOI 10.1074/jbc/MI 17.809137. David Gau⁺¹, Taber Lewis⁶, Lee McDermott⁴, Peter Wipf¹⁻⁶, David Koes⁴, and Partha Roy⁴ ***² From the Departments of ⁴Bioengineering, ⁵Chemistry, ⁴Computational and Systems Biology, ¹Cell Biology, and **Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219

Proximity ligation assay

Sprouting of Explanted Aortic Rings

Morphogenesis

But wait! There's more...

Compound	MolPort#	Structure			20						
C 21	MolPort-007-689-835		625	MolPort-002-791-144		C30	MolPort-010-755-318	-94	C35	MolPort-010-757-408	-655
C22	MolPort-010-757-336	79 7 5	. 626	MolPort-015-162-387		C31	MolPort-010-755-315	A	C36	MolPort-002-791-228	
C23	MolPort-010-757-402		.] c27	MolPort-010-755-324	-355	C32	MolPort-000-139-036	-975	C37	MolPort-002-791-281	<u>y</u>
C2 4	MolPort-002-029-687		C28	MolPort-000-139-032	-975	C33	MolPort-010-755-333	-933	C3B	MolPort-002-748-586	A
C40	MolPort-010-755-336		(23)	MolPort-010-755-317	-95	C34	MolPort-000-139-025		C39	Mol Port-007-689-839	-245
C41	MolPort-000-139-041	-255									
C42	MolPort-015-162-430		-								

Decorations effect binding

Critical for binding

Investigating Alternative Binding Modes

NAMD simulations via DrugGUI http://prody.csb.pitt.edu/drugui/ Default settings & all possible grids NO DRUGGABLE SITES

Investigating Alternative Binding Modes

Whole protein docking of C2 Identified 5 alternative sites Screened against these sites Ranked with Vina and CNN https://github.com/gnina

57 compounds tested, 3 actives identified

DMSO

57 compounds tested, **3 actives** identified

1 didn't work in cells

57 compounds tested, 3 actives identified

1 didn't work in cells

All predicted to bind to different sites

57 compounds tested, 3 actives identified

1 didn't work in cells

All predicted to bind to different sites But not original site

So...

Not sure of binding mode

Not 100% sure on target (could be hitting actin) But...

works in biochemical assay w/purified proteins works in cells

work ex vivo

works in vivo (oxygen-induced retinopathy mouse model)

