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1. Does the compound do what you want it to? 
2. Does the compound not do what you don’t 

want it to? 
3. Is what you want it to do the right thing?
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Kinds of Virtual Screening

ADMET  
Ligand Based 

- similarity to known binder 
- QSAR 
- pharmacophore 

Receptor Based 
- dock and score 
- simulation 

6
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Absorption 
Distribution 
Metabolism 
Excretion 
Toxicity 
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} Will this be a usable drug?

Screening for ADMET: 
Cytochrome P450 interaction 
Lipinksi’s Rule of Five 
QSPR: Quantitative Structure 
Property Relationship 
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Kinds of Virtual Screening

ADMET 
Ligand Based 

- similarity to known binder 

- QSAR 

- pharmacophore 

Receptor Based 
- dock and score 
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Afatinib

Erlotinib

Sunitinib
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Ligand Based: Similarity

Fingerprint Methods 
- map molecules to a descriptor space: 

1D: molecule weight, #h-bonds, etc. 
2D: paths, bond distances between atom-pairs 

- similarity is “distance” between descriptors 
- for bit vectors, Tanimoto distance used 

9

T (A,B) =
A∩ B
A∪ B
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Topological Fingerprints

Daylight/FP2 Fingerprints 
- all paths up to 7 bonds long  
- each path corresponds to bit position (hashing) 
- fast similarity checking (Tanimoto)

10

O=C-N-C

fingerprint:

O=C-O O=N-O
N-C-C-C-C-C=0

C-C=C-C
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Topological Fingerprints

ECFP4 
- all substructures with diameter 4 around every atom
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships
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Cmpd 
Number

Cmpd 
Name

X Log EC50  π Calculated 
Log EC50

Residual

1 6a H 1.07 0 0.79 0.28

2 6b Cl 0.09 0.71 0.21 -0.12

3 6d NO2 0.66 -0.28 1.02 -0.36

4 6e CN 1.42 -0.57 1.26 0.16

5 6f C6H5 -0.62 1.96 -0.81 0.19

6 6g N(CH3)2 0.64 0.18 0.65 -0.01

7 6h I -0.46 1.12 -0.12 -0.34

Properties

C
om

po
un

ds

Biological Activity = Learned linear function of properties

3D-QSAR: includes geometric/structural properties
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships
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SERT QSAR Models MD Simulations Future Work Acknowledgments Questions?

What’s a QSAR Model?

I Regression model used to
estimate relationship
between variables

I Model identifies
relationship between 2D
chemical structures and
bioactivity

f (~x)
f(~x) = w1~x1 + w2~x2 + w3~x3 + ...+ b

I The vectors correspond to the bits

I Weights are assigned based on
prevalence of substructures

I A relationship between vectors, or
substructures, and a�nity can be
estimated

Karla Robles, Je↵ry Madura, David Koes University of Pittsburgh, Duquesne University

QSAR Modeling: Predicting Ligand Binding A�nities and Substructures Key in Binding to SERT
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SERT QSAR Models MD Simulations Future Work Acknowledgments Questions?

Regression of SERT Models

Karla Robles, Je↵ry Madura, David Koes University of Pittsburgh, Duquesne University

QSAR Modeling: Predicting Ligand Binding A�nities and Substructures Key in Binding to SERT
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SERT QSAR Models MD Simulations Future Work Acknowledgments Questions?

Regression of DAT Models

Karla Robles, Je↵ry Madura, David Koes University of Pittsburgh, Duquesne University

QSAR Modeling: Predicting Ligand Binding A�nities and Substructures Key in Binding to SERT

DATSERT

11/15

SERT QSAR Models MD Simulations Future Work Acknowledgments Questions?

Identifying Selectivity from Substructures
ki unique SERT - 8.13

all SERT - 9.65

ki SERT - 9.69

ki no ssris DAT - 5.83

all DAT - 6.19

ki DAT - 6.21

Karla Robles, Je↵ry Madura, David Koes University of Pittsburgh, Duquesne University

QSAR Modeling: Predicting Ligand Binding A�nities and Substructures Key in Binding to SERT
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Profile-QSAR: A Novel meta-QSAR Method that Combines Activities
across the Kinase Family To Accurately Predict Affinity, Selectivity,
and Cellular Activity
Eric Martin,* Prasenjit Mukherjee, David Sullivan,† and Johanna Jansen

Oncology and Exploratory Chemistry, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street,
Emeryville, California 94608, United States

’ INTRODUCTION

Experimental high throughput screening (HTS) is a key
technology for identifying starting points for medicinal chemistry
optimization.1 However, HTS is extremely costly,2 with a
standard screen of a ∼1.5 million compound archive costing
nearly a million dollars and taking up to six months for
completion.3 Additionally, commercial collections and virtual
libraries are not amenable to HTS, nor are certain assays, such as
many sophisticated assays conducted on cell lines. Thus, alter-
native methods of hit discovery are wanted.

Virtual screening (VS), or in silico screening,4!6 is one
alternative to HTS. VS is not only faster and less expensive than
HTS, but it can access chemistry outside the corporate archive.
VS can be structure-based, wherein millions of “virtual com-
pounds” are docked into an experimental protein structure or a
model derived from structures of homologous proteins. It can
also include ligand-based approaches such as QSAR models,
pharmacophore models, and machine learning methods as well
as similarity searching tools. With the advancement of computer

hardware, these methodologies have attained the necessary
throughput and have several success stories.7 Some head-to-head
comparisons8,9 of VS and HTS on the same target of interest
have shown that the methods can act complementarily, each
recovering hits missed by the other. However, in routine evalua-
tions, structure10,11 and ligand-based methods12,13 typically have
only been shown to provide an enrichment of 2!7 times for the
recovery of true positives. “Cherry-picking” even 10% of a large
collection is prohibitively expensive. Furthermore, actual IC50
affinity predictions, which are important for prioritizing com-
pounds for testing, rarely correlate well with experiment.

While general scoring functions in docking provide broad
applicability toward a range of targets, greater accuracy can be
achieved with empirically trained, target-specific scoring func-
tions. In addition, instead of treating each new target as a unique
idiosyncratic protein, a wider chemogenomic approach that

Received: December 20, 2010

ABSTRACT: Profile-QSAR is a novel 2D predictive model building
method for kinases. This “meta-QSAR” method models the activity of
each compound against a new kinase target as a linear combination of its
predicted activities against a large panel of 92 previously studied kinases
comprised from 115 assays. Profile-QSAR starts with a sparse incom-
plete kinase by compound (KxC) activity matrix, used to generate
Bayesian QSAR models for the 92 “basis-set” kinases. These Bayesian
QSARs generate a complete “synthetic” KxC activity matrix of predic-
tions. These synthetic activities are used as “chemical descriptors” to train partial-least squares (PLS)models, frommodest amounts
of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases
(115 assays) gave a median external R2ext = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict
pairwise kinase selectivities with a median correlation of R2ext = 0.61 for 958 kinase pairs with at least 600 common compounds. It
has been further expanded by adding a “CkXC” cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase
driven cellular assays with median R2ext = 0.58 for 24 target modulation assays and R2ext = 0.41 for 18 cell proliferation assays.

The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-
throughput screening (IMTS)methodology for virtual screening (VS) of compound archives as an alternative to experimental high-
throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far
been obtained in eight of them. Q2 values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied
from 25% to 80%, except in K5, which was a special case aimed specifically at finding “type II” binders, where none of the compounds
were predicted to be active at 10 μM. These overall results are particularly striking as chemical novelty was an important criterion in
selecting compounds for testing.

The method is completely automated. Predicted activities for nearly 4 million internal and commercial compounds across 115
kinase assays and 42 cellular assays are stored in the corporate database. Like computed physical properties, this predicted kinase
activity profile can be computed and stored as each compound is registered.

1944 dx.doi.org/10.1021/ci1005004 |J. Chem. Inf. Model. 2011, 51, 1942–1956
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step of finding conventional QSARs for each individual basis-set
kinase, as shown in panel (c) of Figure 1, solves both of these
problems. First, going down columns of the matrix, the limited
activity data available for each kinase are used to generate
individual binary Bayesian QSAR models (see below) at up to
five concentration thresholds for each assay. These models are
used to generate a complete “synthetic” KxC matrix for all
130,000 compounds on all the 115 kinase assays. The predicted
activities for the 115 assays in this synthetic KxC matrix are then
used as the “chemical descriptors” to train a model against the
IC50s of the new kinase using PLS regression. Predictions on new
compounds do not require any new experiments; each new
compound is first run through the conventional Bayesian QSARs
to fill in its row in the synthetic KxCmatrix, and then run through
the final PLS regression equation to predict its activity on Knew.
All 1.5 million IC50s contribute to each kinasemodel through this
2-step process, first combining the data down the columns in the
BayesianQSARs, then combining across the rows in the final PLS
regression equation. These predictions prove to be much more
accurate than the individual Bayesian QSAR models from which
they were built.

The highly automated binary Bayesian QSAR method im-
plemented in Pipeline Pilot (Accelrys, San Diego, CA) was
selected to generate the synthetic KxC Matrix. Numerous
modeling methods could be used for this purpose. Evaluations
comparing continuous PLS QSAR models to binary Bayesian
QSAR at up to five concentration thresholds showed comparable
overall performance, but the former was far more computer
intensive. The Naive Bayes36 method uses Bayesian statistics to
model binary data (active/inactive at a concentration threshold)
as the dependent variable and a hashed bit-string of chemical
substructures as inputs. It assigns conditional probabilities to the
individual substructures from their frequency of occurrence in
the active set compared to the whole data set or background.
New molecules are assigned a probability of activity from a linear
combination of the probabilities of its substructures.

’METHODS

All workflows for the evaluation phase of this study were
generated in Pipeline Pilot and could be run in an automated
fashion. For higher throughput iterative screening applications,

Figure 1. (a) Theory behind Profile-QSAR assumes that activity of a compound against a new kinase (Knew) can be modeled by a weighted sum of
activities against a reference panel of previously studied Kinases (K1 to Kn). (b) Distribution of 92 kinases across the arms of Sugen’s human kinome
dendrogram. The color scheme going from green to red indicates data sets of increasing size. (c) Schematic illustrating the Profile-QSARmethodology.
At the top is a sparse experimental “KxCmatrix” of kinase biochemical data, which is not directly suitable for PLS model building due to missing values.
Therefore, first, going down the columns, up to five BayesianQSARmodels are trained on the available activity data for each individual kinase to generate
a complete “synthetic”KxCmatrix. The profiles of predicted kinase activities in this synthetic matrix are then used as “chemical descriptors” to construct
a PLS model for Knew.
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step of finding conventional QSARs for each individual basis-set
kinase, as shown in panel (c) of Figure 1, solves both of these
problems. First, going down columns of the matrix, the limited
activity data available for each kinase are used to generate
individual binary Bayesian QSAR models (see below) at up to
five concentration thresholds for each assay. These models are
used to generate a complete “synthetic” KxC matrix for all
130,000 compounds on all the 115 kinase assays. The predicted
activities for the 115 assays in this synthetic KxC matrix are then
used as the “chemical descriptors” to train a model against the
IC50s of the new kinase using PLS regression. Predictions on new
compounds do not require any new experiments; each new
compound is first run through the conventional Bayesian QSARs
to fill in its row in the synthetic KxCmatrix, and then run through
the final PLS regression equation to predict its activity on Knew.
All 1.5 million IC50s contribute to each kinasemodel through this
2-step process, first combining the data down the columns in the
BayesianQSARs, then combining across the rows in the final PLS
regression equation. These predictions prove to be much more
accurate than the individual Bayesian QSAR models from which
they were built.

The highly automated binary Bayesian QSAR method im-
plemented in Pipeline Pilot (Accelrys, San Diego, CA) was
selected to generate the synthetic KxC Matrix. Numerous
modeling methods could be used for this purpose. Evaluations
comparing continuous PLS QSAR models to binary Bayesian
QSAR at up to five concentration thresholds showed comparable
overall performance, but the former was far more computer
intensive. The Naive Bayes36 method uses Bayesian statistics to
model binary data (active/inactive at a concentration threshold)
as the dependent variable and a hashed bit-string of chemical
substructures as inputs. It assigns conditional probabilities to the
individual substructures from their frequency of occurrence in
the active set compared to the whole data set or background.
New molecules are assigned a probability of activity from a linear
combination of the probabilities of its substructures.

’METHODS

All workflows for the evaluation phase of this study were
generated in Pipeline Pilot and could be run in an automated
fashion. For higher throughput iterative screening applications,

Figure 1. (a) Theory behind Profile-QSAR assumes that activity of a compound against a new kinase (Knew) can be modeled by a weighted sum of
activities against a reference panel of previously studied Kinases (K1 to Kn). (b) Distribution of 92 kinases across the arms of Sugen’s human kinome
dendrogram. The color scheme going from green to red indicates data sets of increasing size. (c) Schematic illustrating the Profile-QSARmethodology.
At the top is a sparse experimental “KxCmatrix” of kinase biochemical data, which is not directly suitable for PLS model building due to missing values.
Therefore, first, going down the columns, up to five BayesianQSARmodels are trained on the available activity data for each individual kinase to generate
a complete “synthetic”KxCmatrix. The profiles of predicted kinase activities in this synthetic matrix are then used as “chemical descriptors” to construct
a PLS model for Knew.
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carried out as described above. The synthetic matrix is generated
and transferred along with the activity data sets to a Linux cluster
running standalone R. Pipeline pilot executes a high level shell
script on the cluster that automatically creates individual job
subdirectories, input files, and pbs job submission scripts that
build the PLS models. An additional background script monitors
for completed jobs, resubmitting lost jobs if required, and upon
completion of model generation passes the results back to
Pipeline pilot.
The prediction protocol starts by downloading chemical

structures from the corporate archive and dividing them into
batches of 100,000 compounds. The synthetic matrix is gener-
ated for each batch, which is similarly pushed to the Linux cluster.
A shell script automatically generates and submits pbs scripts that
predict activity for the entire corporate archive for each Profile-
QSARmodel. A background script checks for completion of jobs,
resubmitting jobs as required. The individual predictions for all
115 biochemical and 42 cellular assays are joined into a full
profile prediction table. Pipeline Pilot loads the predictions into
the corporate database.

’RESULTS

Performance of Profile-QSAR on Biochemical Data. Be-
cause of the distribution of the data, the chosen figure of merit
was correlation, rather than a prediction residual, such as
standard error. Most compounds in each assay are inactive at
the highest tested concentration. To include these inactive data
in model building, a 10-fold offset from the highest tested
concentration is applied, i.e., if 70% of an assay data set have
IC50 > 100 uM, these pIC50s are all set to 3, while the remaining
30% might have measured pIC50 ranging from 4 to 9 (IC50 of
100 uM to 1nM). An inability to distinguish the few highly active
compounds from the sea of inactive compounds might be
disguised by correctly predicting the larger number of inactive
compounds, while missing the compounds with high measured
IC50s. In the extreme case, a model that predicts that every
compound has pIC50 = 3 would give a good standard error, but
would do nothing to distinguish active from inactive compounds.
On the other hand, correlation demonstrates a general agree-
ment across the entire pIC50 distribution and therefore became
the measure of choice. Figure 2 plots the predicted and experi-
mental pIC50s from the test sets of three Profile-QSAR kinase
models. While all three have virtually identical RMSE, there is
a clear loss in correlation going from left (R2 = 0.71) to right

(R2 = 0.33). The test set sizes were (a) 1495, (b) 256, and (c) 249
pIC50s. The percentage of the assay data sets that were at the
highest concentration tested were (a) 2.3%, (b) 75%, and
(c) 73%.
A retrospective study evaluated what differences in R2 values

are significant. One hundred random 75/25 splits of two
biochemical assay data sets were generated to evaluate how Q2

and R2ext fluctuate with simple perturbations of the data set. One
assay was from among the best performing models, and the other
was near the median. For the high performing model, the median
Q2 for the 100 training set splits was 0.805, with standard
deviation (SD) = 0.003, and R2ext = 0.804 with SD = 0.008 for
the 25% held-out test set splits. For the more typical model,Q2 =
0.612 with SD = 0.01, and R2ext = 0.616 with SD = 0.026. This
suggests that differences of R2 g 0.02 can be considered
significant when comparing two models. However, while com-
paring median Q2 or R2ext over many assays, i.e., for evaluating

Figure 2. Scatter plots for the experimental and predicted pIC50s from the test sets of three Profile-QSARmodels. While all three have virtually identical
RMSE, the R2 decreasing from left to right parallels a clear decrease in ability to discriminate between active and inactive compounds. The test set sizes
were (a) 1495, (b) 256, and (c) 249 pIC50s. The percentage of the assay data sets that were at the highest concentration tested were (a) 2.3%, (b) 75%,
and (c) 73%.

Figure 3. (a) Plot showing R2ext obtained by Profile-QSAR (blue
diamonds) and simple Bayesian QSAR models (red squares) for the
25% held-out test set across 115 kinase assays. (b) Plot showing the cor-
relation between R2ext from the 115 models with the dynamic range
(σpIC50) of the biochemical assay data. Colors indicate data set size.
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Ligand Based: Similarity

Superposition Methods 
- compute “overlap” between molecules 

- consider shape, electrostatics, pharmacophores 

15http://www.cresset-group.com/

http://www.cresset-group.com


Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Ligand/Receptor Based: Pharmacophore

Pharmacophore: 
IUPAC: The ensemble of steric and electronic features that is 
necessary to ensure the optimal supra-molecular 
interactions with a specific biological target structure and to 
trigger (or to block) its biological response.

16

Common Features: 
aromatic ring  
hydrophobic area 
positive ionizable 
negative ionizable  
hydrogen bond donor 
hydrogen bond acceptor
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Pharmacophore Features
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Aromatic

Hydrogen Donor

Hydrogen Acceptor

Negative

Positive

Hydrophobic
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Charge-Charge
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2QWK.pdb

Salt Bridge

Inhibitor of the influenza virus neuraminidase (antiviral agent)
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Hydrogen Bond
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Hydrogen Bond
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Distance: 
D-A: 2.5Å – 3.5Å (4.0Å?) 
H-A: 1.5Å – 2.5Å 
Angle:   
Depends on context

1HJA.pdb

Turkey Ovomucoid Inhibitor 
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Hydrophobic
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Hydrophobic
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p53/MDM2

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome) 
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p53/MDM2

MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome) 
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Aromatic
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Aromatic

25

Rings offset 
Interplanar distance: 3.3-3.8Å 

Human liver glycogen phosphorylase a complexed with caffeine 
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Kinds of Virtual Screening

ADMET 
Ligand Based 

- similarity to known binder 

- QSAR 

- pharmacophore 

Receptor Based 
- dock and score

27
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Pharmacophores Aren’t Enough 
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Pharmacophores Aren’t Enough 

28

.2µM 50µM n.i.
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Docking

Determine the conformation and pose of a 
ligand at a docking site 

29

Challenge is to find 
conformation and pose with 
the best score 
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Two Phase Docking

30

1. Global Pose Estimation 2. Local Refinement

Stochastic Minimization
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Two Phase Docking
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1. Global Pose Estimation 2. Local Refinement

Stochastic Minimization
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Scoring Goals

Affinity Prediction 
 -how well does it bind? 

Inactive/Active Discrimination 
 -does it bind? 

Pose Prediction 
-how does it bind? 

31
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Speed
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Scoring Goals

Affinity Prediction 
 -how well does it bind? 

Inactive/Active Discrimination 
 -does it bind? 

Pose Prediction 
-how does it bind? 

31

Speed
Approximations: 
Rigid or semi-rigid receptor 
Implicit water model

  University of Pittsburgh   Computational and Systems Biology
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Scoring Types

Force-field based 
inter- and intra- molecular forces  
van der Waals, electrostatic, torsional 

Empirical 
parameterized function is fit to binding energy data 

Knowledge based 
scoring function based on known structure, not 
physical principles 

Consensus 

32
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Force Field: Dock 4.0

33

van der Waals 
a = 12, b = 6 
Lennard-Jones potential 

Coulomb’s Law 
q: partial charges 
D: dielectrict constant

-.41
.205.205
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Empirical: AutoDock Vina

34

r1 r2d
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Knowledge Based: RF-Score

35

C N O S
C
N
O
S
P
F 9
Cl
Br
I

Protein
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ga

nd

Pairwise Distance Counts (<12Å)

Random Forest
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Can we do better?
Accurate pose prediction, binding 
discrimination, and affinity prediction without 
sacrificing performance? 

36
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Can we do better?
Accurate pose prediction, binding 
discrimination, and affinity prediction without 
sacrificing performance? 

Key Idea: Leverage “big data” 
231,655,275 bioactivities in PubChem 

125,526 structures in the PDB 

16,179 annotated complexes in PDBbind

36
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Machine Learning

Features Prediction

37
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Neural Networks

step sigmoid ReLU

38
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, a 
feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.

39
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Deep Learning

40
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Deep Learning

40
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Image Recognition

https://devblogs.nvidia.com

Convolutional Neural Networks

41
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Convolutional Neural Networks

.

.

.

.

.

. Dog: 0.99
Cat: 0.02

Convolution 
Feature Maps

Convolution 
Feature Maps

Fully Connected
Traditional NN
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CNNs for Protein-Ligand Scoring

CNN
Pose Prediction

Binding 
Discrimination

Affinity Prediction

43
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Protein-Ligand Representation

(R,G,B) pixel
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C C O O
C C C C C O O O O
C C C C C C

O
O O O

C C C C C C O O
C C C C

C C C C
C C C C
C C C C

Protein-Ligand Representation

(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel
The only parameters for 
this representation are the 
choice of grid resolution, 
atom density, and atom 
types.

44
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Model

45
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Results

46

Trained on PDBbind refined; tested on CSAR

Affinity Prediction Pose Prediction

🤔 
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Beyond Scoring
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Beyond Scoring

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams

47
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https://deepdreamgenerator.com/#gallery 48
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Beyond Scoring

2Q89

More Oxygen Here

Less Oxygen Here
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Beyond Scoring

2Q89

More Oxygen Here

Less Oxygen Here
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3AO4
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3AO4
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Related Work

51
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Case Study: Profilin-Actin
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Profilin

53

Dave Gau Partha Roy

• Actin-binding protein 
• Accelerates actin 

polymerization in presence 
of proline-rich proteins 
(e.g. formin, WASP, VASP) 

• Sequesters actin otherwise

PPPPP

Actin

Profilin
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Profilin is important for angiogenesis

54

Endothelial Cell Single-Cell 
Migration and Wound Closure

Ding, Z., Lambrechts, A., Parepally, M., and Roy, P., 2006, "Silencing profilin-1 inhibits endothelial cell 
proliferation, migration and cord morphogenesis.," Journal of cell science, vol.119, no.Pt 19, pp. 4127-37, 
16968742. 

Ding, Z., Gau, D., Deasy, B., Wells, A., and Roy, P., 2009, "Both actin and polyproline interactions of profilin-1 
are required for migration, invasion and capillary morphogenesis of vascular endothelial cells.," Experimental 
cell research, vol.315, no.17, pp. 2963-73, 19607826.

2D Cord Morphogenesis 
Assay

Lectin

Control Pfn1 siRNA

Sprouting of Explanted 
Aortic Rings
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Interface

55

C285 - I289

I165 - H173
S358 - F375

PDB 2BTF
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Interface Analysis

56
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Key Contacts

57

D286 
-5.3  ΔG 
73% ΔSASA%

Y166 
-0.9  ΔG 
51% ΔSASA%

Y169 
-1.5  ΔG 
60% ΔSASA%

R372 
-2.6  ΔG 
72% ΔSASA%
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Pocket Hunting

58

AMBER
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Fragment Docking

59

Dock benzene and 
water to structures 
extracted from 
molecular dynamics 
simulation 
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Pharmacophores

60

10 pharmacophores 
hydrophobic core  +      hbond features (5

3)
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Pharmacophore Search

61

http://pharmit.csb.pitt.edu/
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Refine and Consensus Score

62

Select 10 representative conformations from MD  
https://github.com/dkoes/md-scripts 

Minimize with smina and Vina scoring function 

Consensus score 

Cluster using OpenBabel FP2 fingerprints  
https://pymolwiki.org/index.php/
Cluster_mols 

Select top ranked compounds, at most 2 from a cluster
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20 Compounds Ordered
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20 Compounds Ordered
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2D Cord 
Morphogenesis

Sprouting of Explanted 
Aortic Rings

Proximity ligation assay



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

65

But wait! There's more...
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Acquired all commercially available 
compounds with same scaffold as C1/C2 
None were more potent, limited SAR revealed

66
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Critical 
for 

binding

Decorations 
effect binding



Department of Computational Biology

  University of Pittsburgh   Computational and Systems Biology

Investigating Alternative Binding Modes

NAMD simulations via DrugGUI  
http://prody.csb.pitt.edu/drugui/ 
Default settings & all possible grids 
NO DRUGGABLE SITES

68
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Investigating Alternative Binding Modes

Whole protein docking of C2 
Identified 5 alternative sites 
Screened against these sites 
Ranked with Vina and CNN 
https://github.com/gnina
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DMSO

C73

C74

C76

Alternative Binding Site Results
57 compounds tested, 3 actives identified

70

VinaCNN

1 uM 10 uM 50 uM 100 uM

DMSO C73

C74
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DMSO

C73

C74

C76

Alternative Binding Site Results
57 compounds tested, 3 actives identified
1 didn't work in cells
All predicted to bind to different sites
But not original site

70

VinaCNN

1 uM 10 uM 50 uM 100 uM

DMSO C73

C74
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So...

Not sure of binding mode 
Not 100% sure on target (could be hitting actin) 
But... 

works in biochemical assay w/purified proteins 
works in cells 
work ex vivo 
works in vivo (oxygen-induced retinopathy mouse 
model)
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@david_koes
github.com/gnina
http://bits.csb.pitt.edu
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http://github.com/gnina
http://bits.csb.pitt.edu

