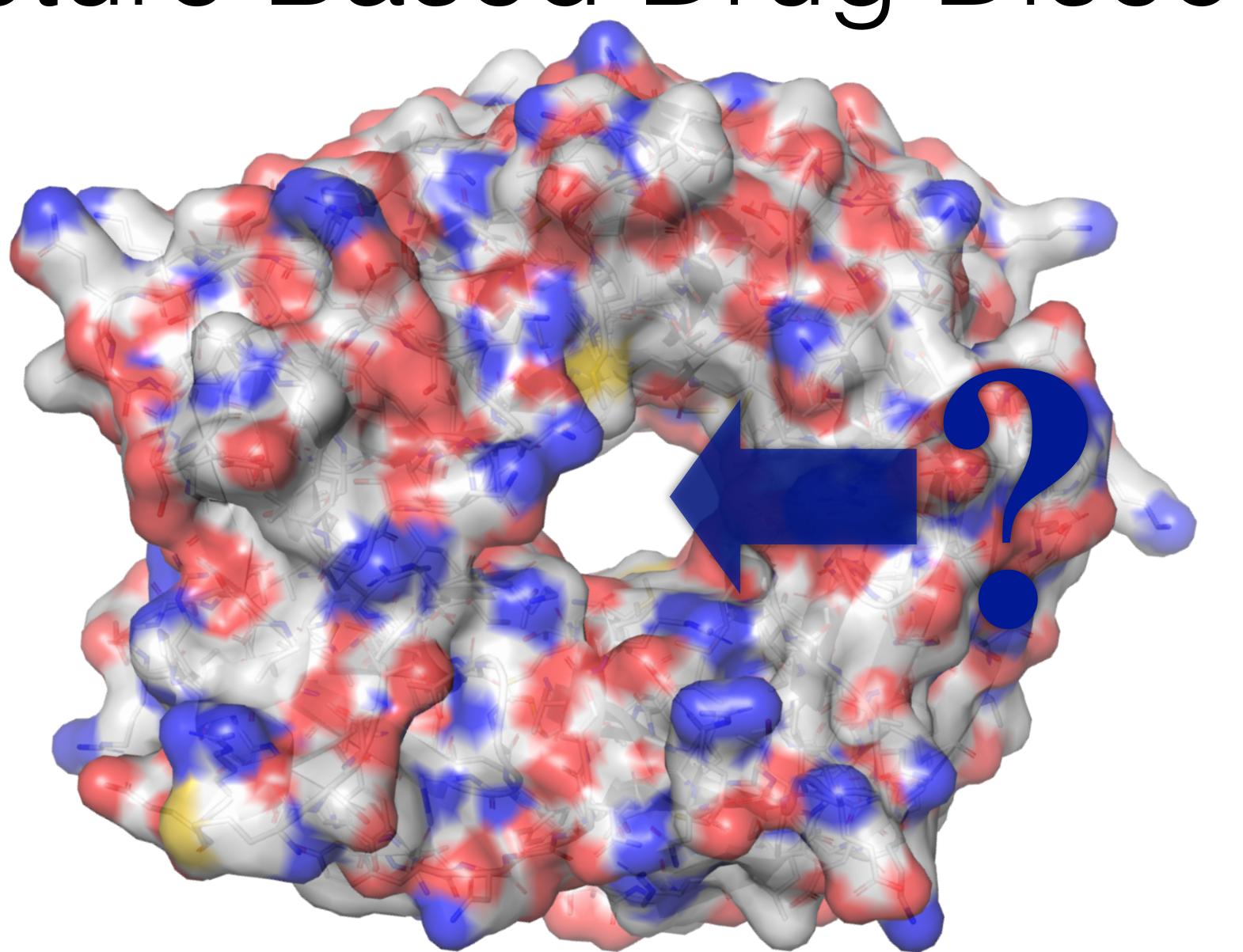
Deep Learning for Structure-Based Drug Discovery: From Scoring to Generative Design

David Ryan Koes October 17, 2025 AbbVie SMTPT Seminar Series

Structure Based Drug Discovery



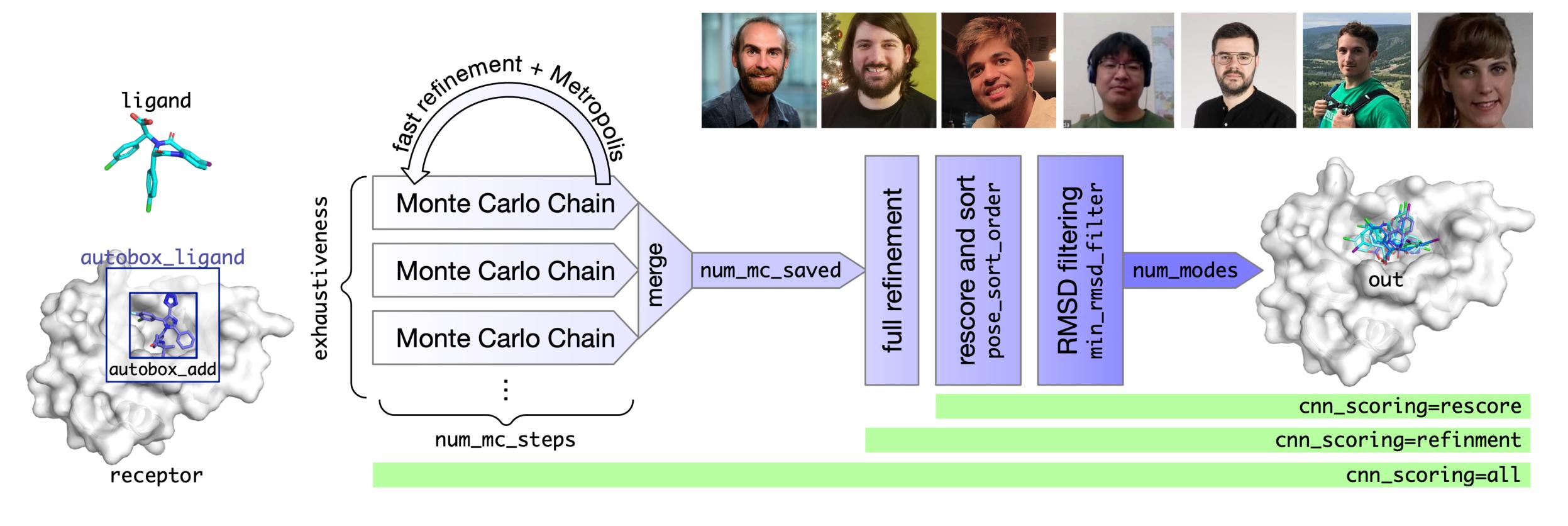
GNINA 1.0

https://github.com/gnina/gnina

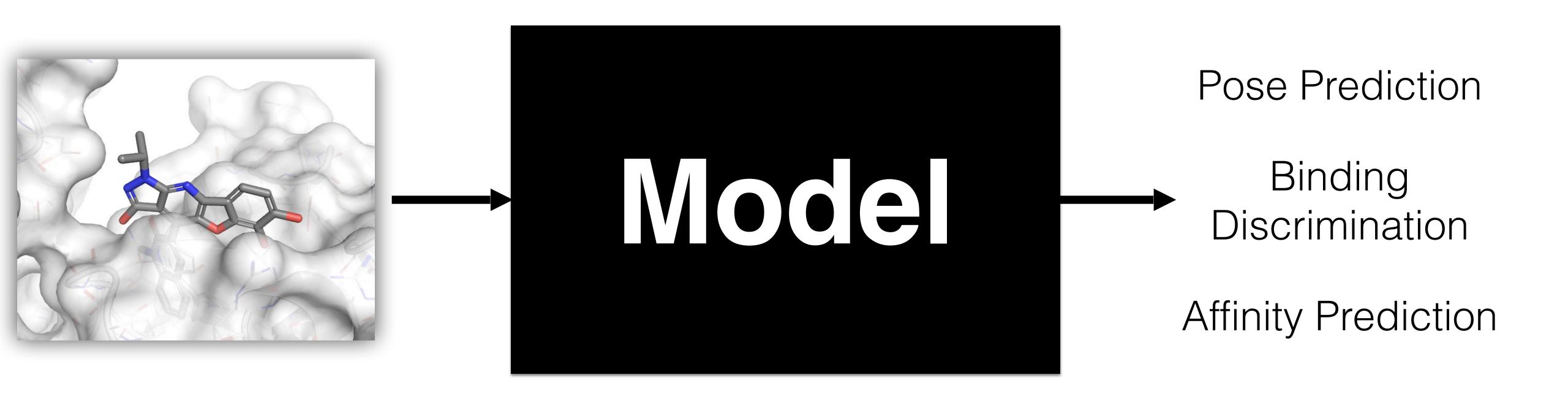
SOFTWARE Open Access

GNINA 1.0: molecular docking with deep learning

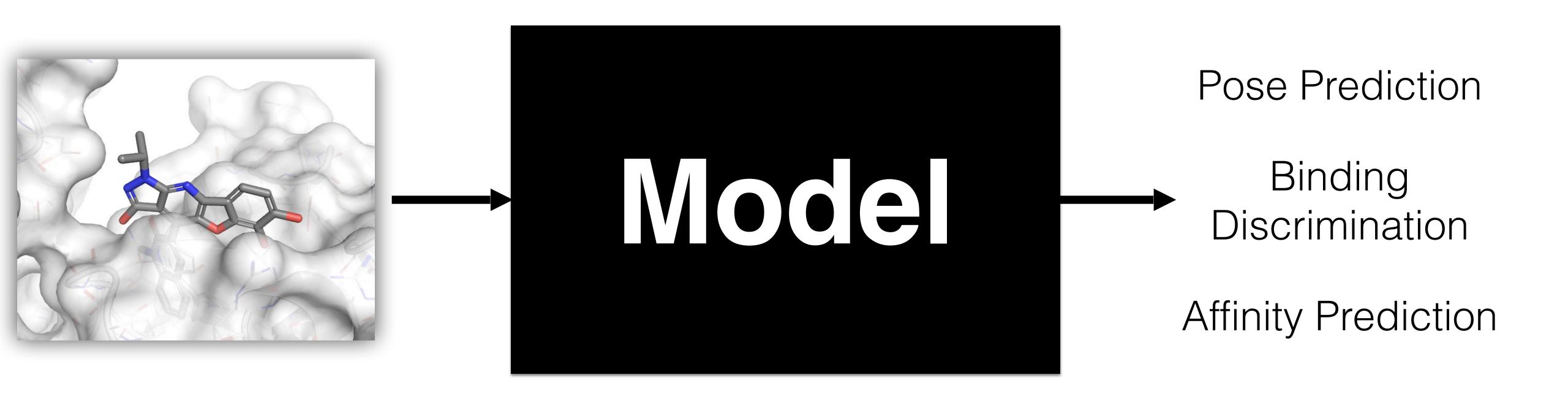
Andrew T. McNutt¹, Paul Francoeur¹, Rishal Aggarwal², Tomohide Masuda¹, Rocco Meli³, Matthew Ragoza¹, Jocelyn Sunseri¹ and David Ryan Koes^{1*}



Protein-Ligand Scoring

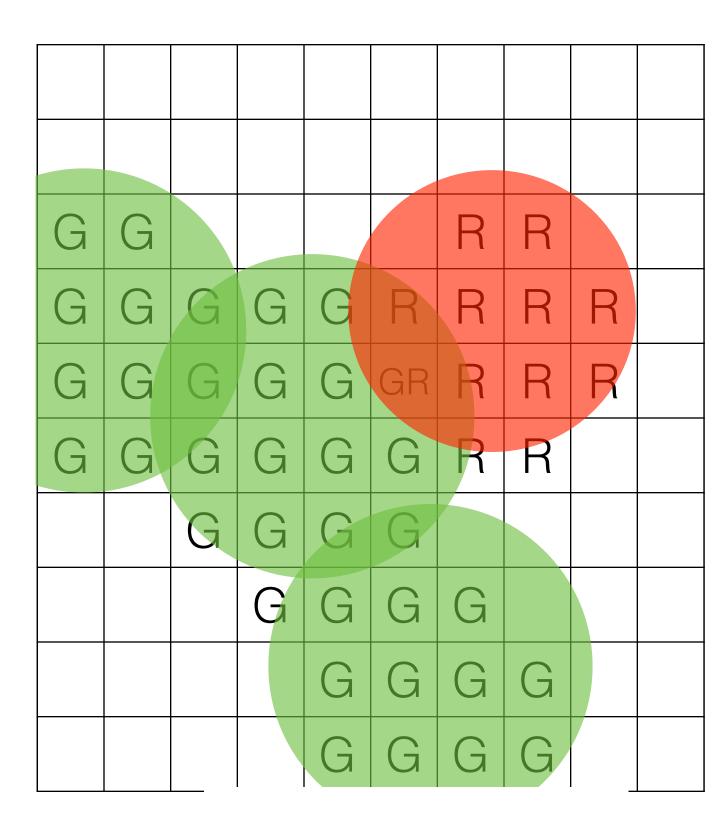


Protein-Ligand Scoring

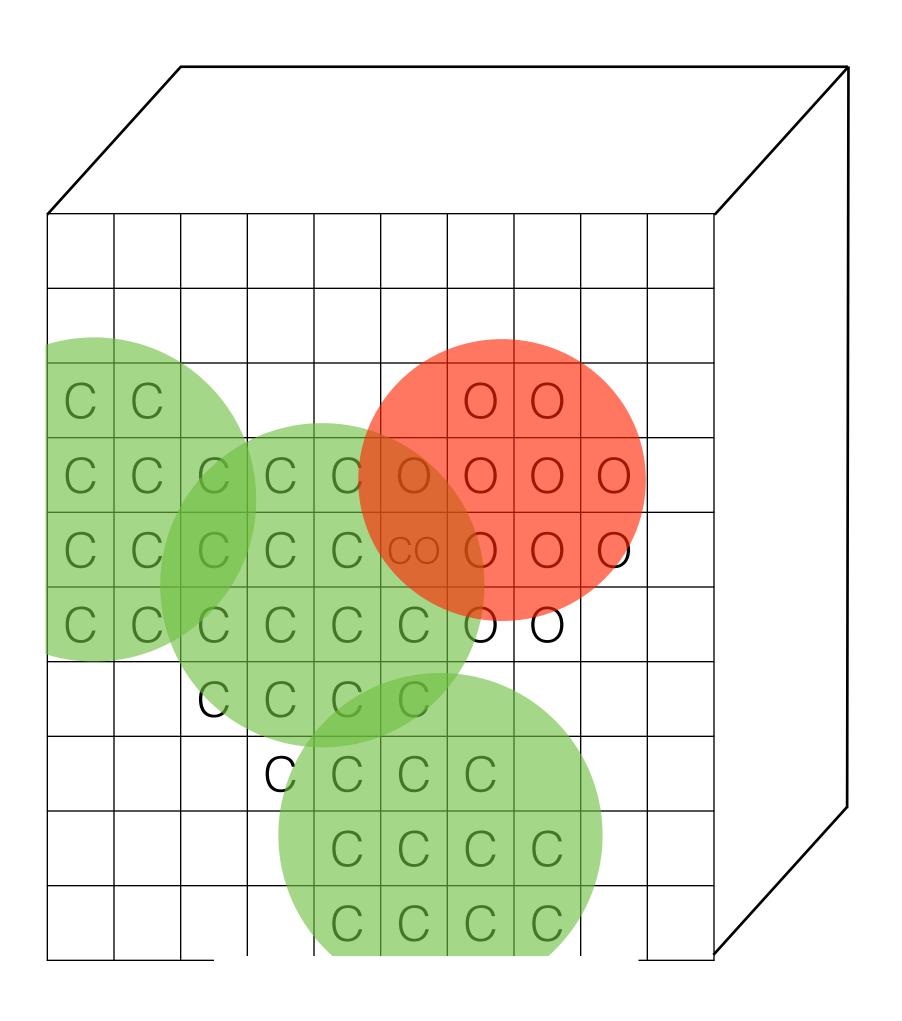


Protein-Ligand Representation

(R,G,B) pixel



Protein-Ligand Representation



```
(R,G,B) pixel →(Carbon, Nitrogen, Oxygen,...) voxel
```

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

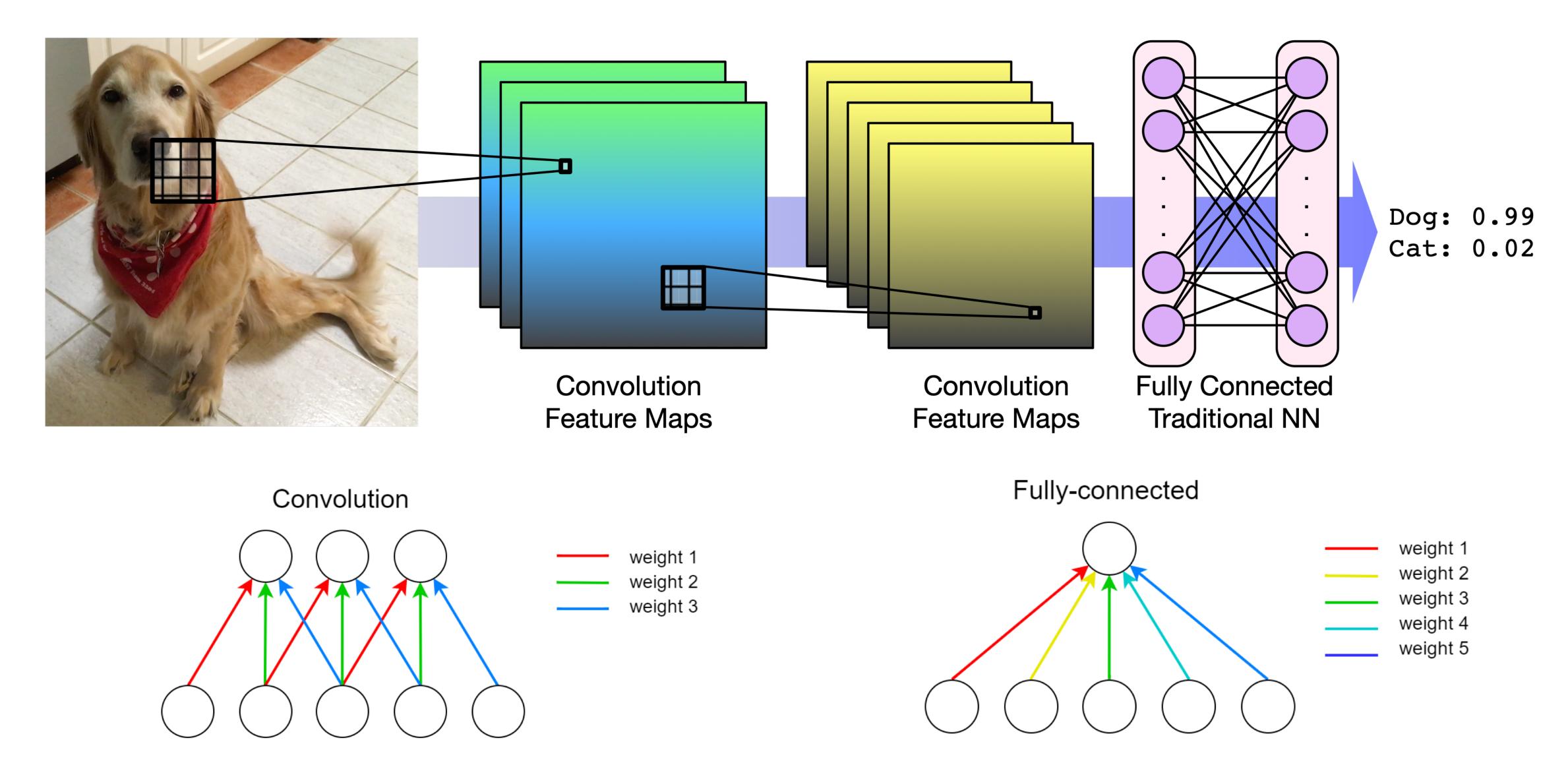
CHEMICAL INFORMATION
AND MODELING

pubs.acs.org/jcim

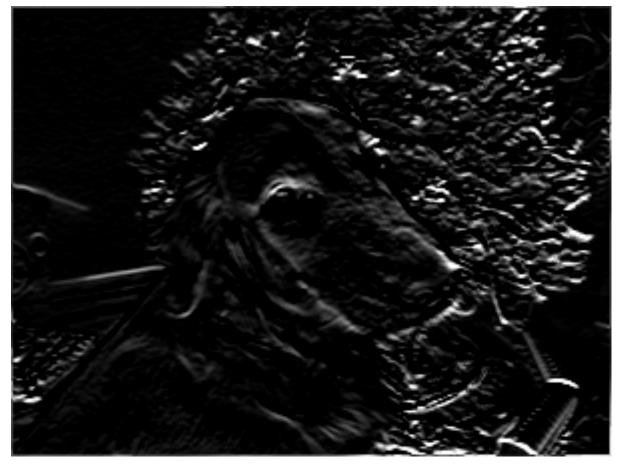
Protein-Ligand Scoring with Convolutional Neural Networks

Matthew Ragoza,^{†,‡} Joshua Hochuli,^{‡,¶} Elisa Idrobo,[§] Jocelyn Sunseri,^{||} and David Ryan Koes*,^{||}

Convolutional Neural Networks



Convolutional Filters

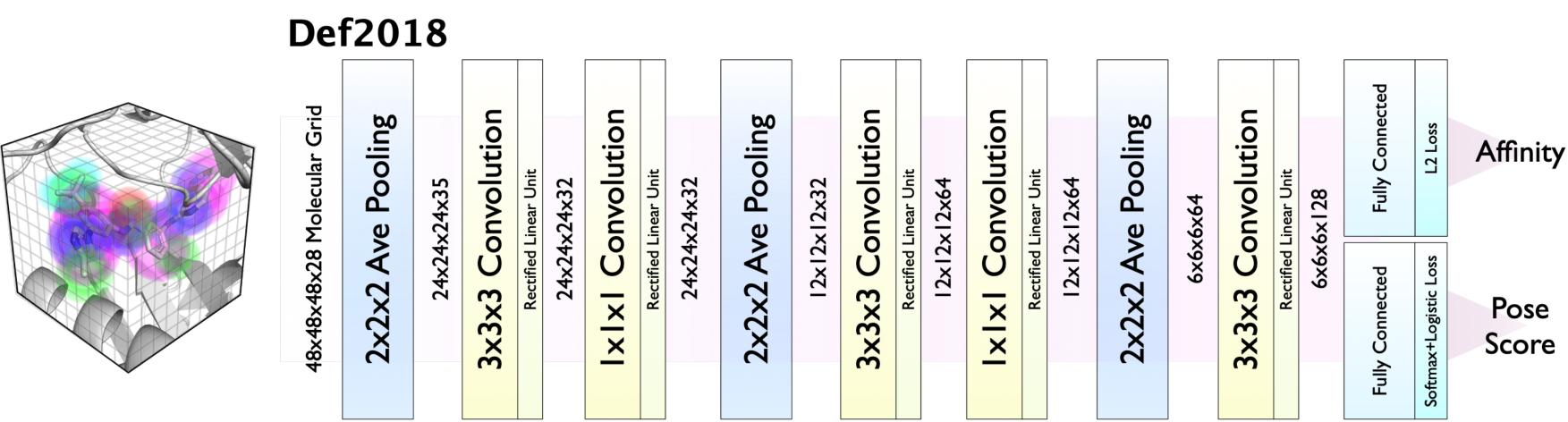


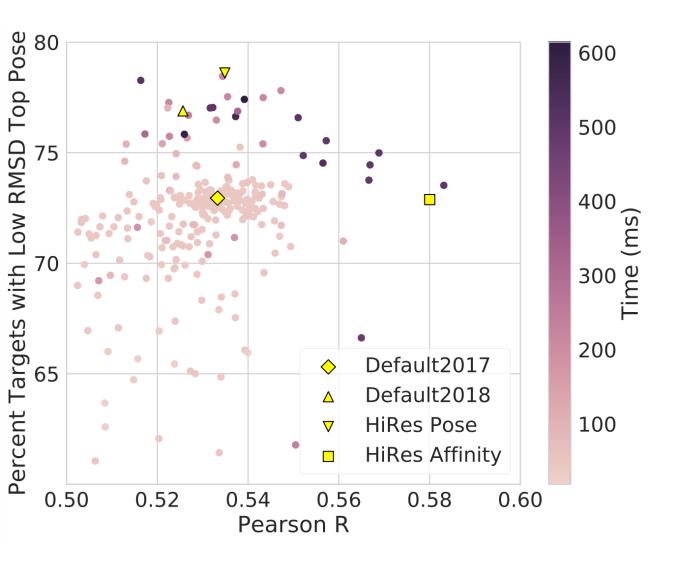
-1	-1	-1
0	0	0
1	1	1

-1	0	1	
-1	0	1	
-1	0	1	

-1	-1	-1
-1	8	-1
-1	-1	-1

Protein Ligand Scoring





Dense

7

2x2x2 Max Pooling

x48x28 Molecular Grid

48×48

3x3x3 Convolution (3
Rectified Linear Unit
Dense Block

IXIXI Convolution (96)

Rectified Linear Unit

2x2x2 Max Pooling

2x2x2 Max Pooling

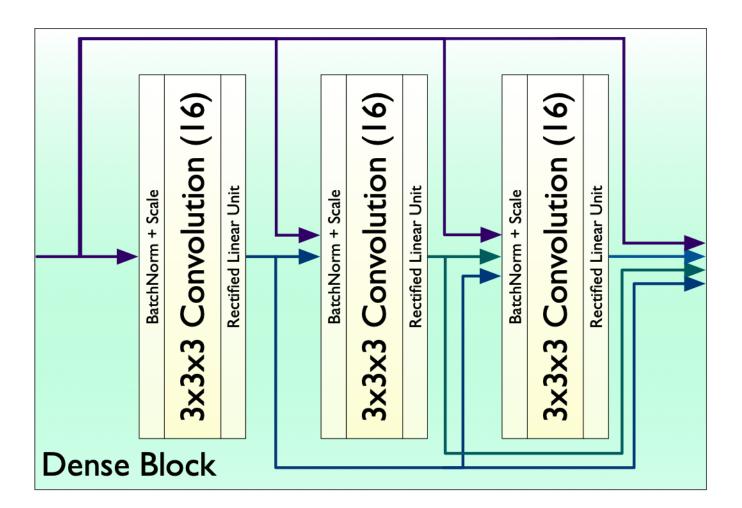
Dense Block

IXIXI Convolution (I Rectified Linear Unit 2x2x2 Max Pooling

388,736 Parameters

(09

Dense Block Global Max Pooling Fully Connected
Softmax+Logistic Loss
L2 Loss
Soch and Softmax and



684,640 Parameters

Cross-Docked Protein Ligand Scoring

Three-Dimensional Convolutional Neural Networks and a Cross-**Docked Data Set for Structure-Based Drug Design**

Paul G. Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B. Iovanisci, Ian Snyder, and David R. Koes*

Cite this: J. Chem. Inf. Model. 2020, 60, 9, 4200-4215

Publication Date: August 31, 2020 > https://doi.org/10.1021/acs.jcim.0c00411 Copyright © 2020 American Chemical Society

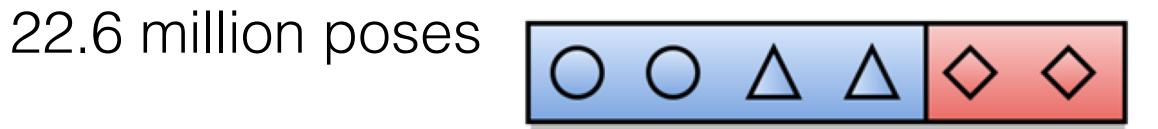
RIGHTS & PERMISSIONS

1420

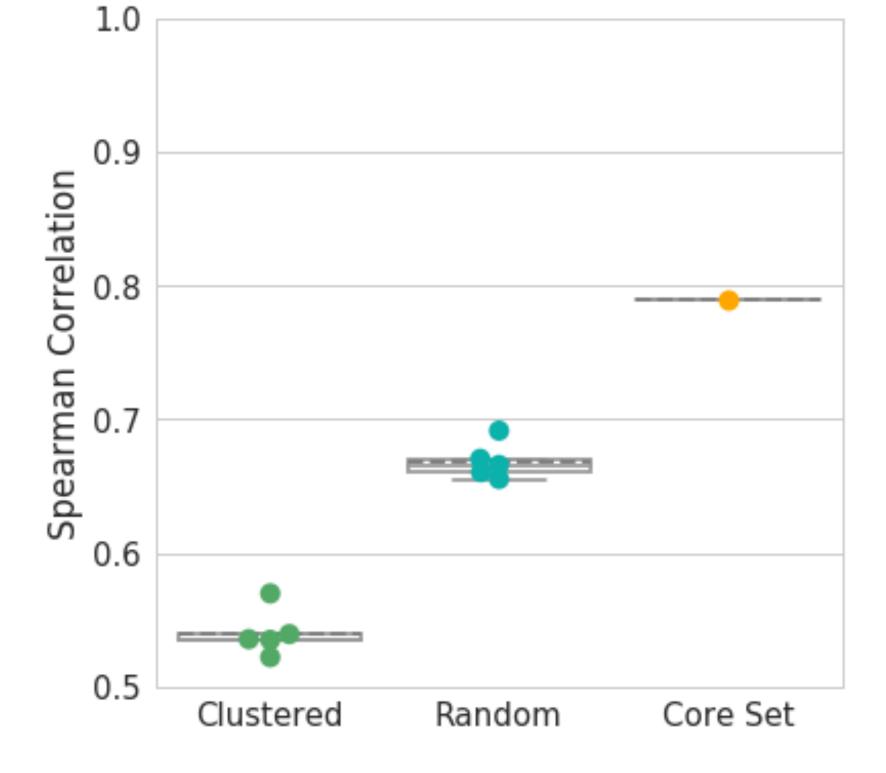
LEARN ABOUT THESE METRICS

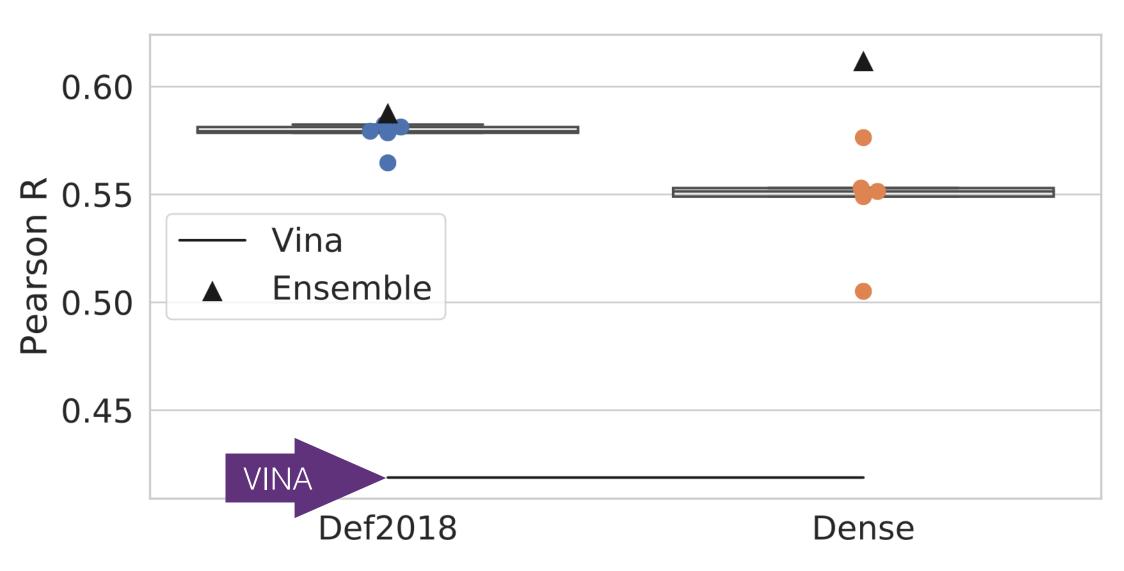
18,450 complexes

Clustered Cross-validation

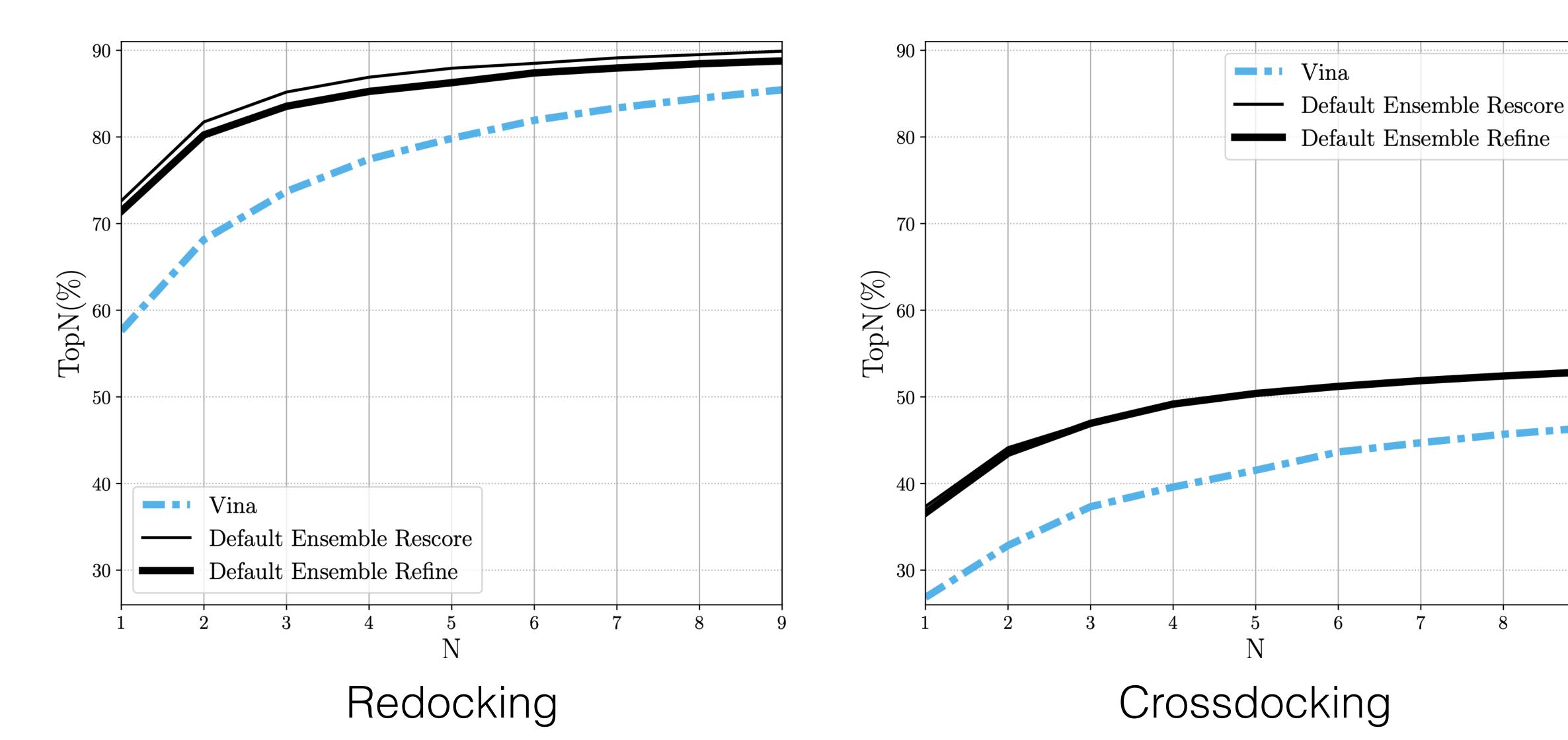


Affinity Prediction

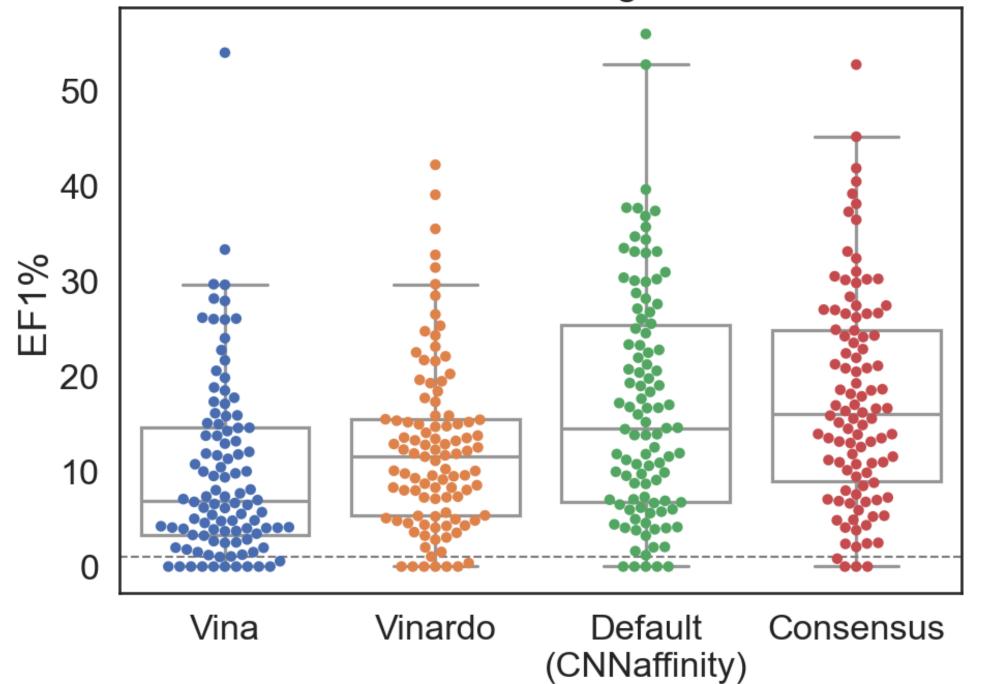




Docking Performance



DUD-E Virtual Screening Performance



Open Access

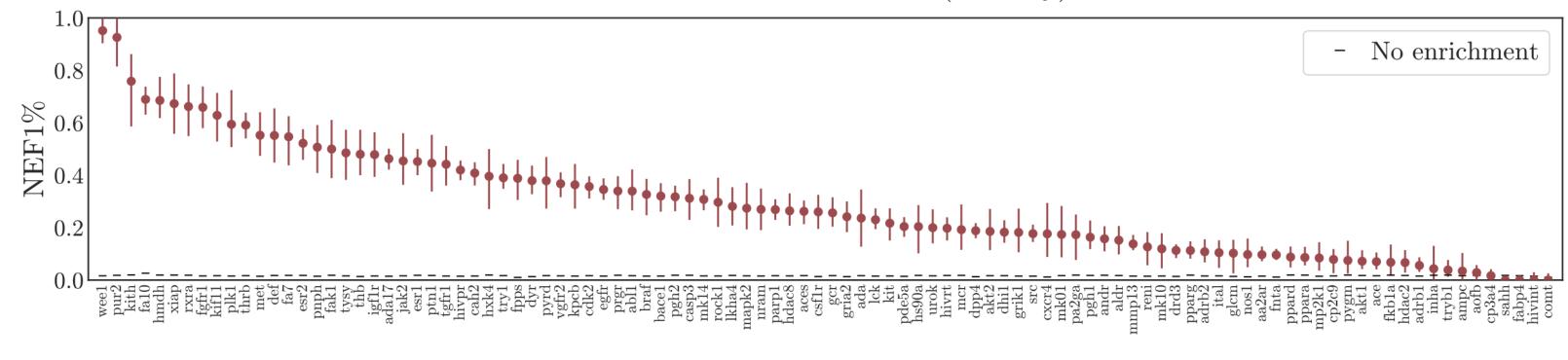
Article

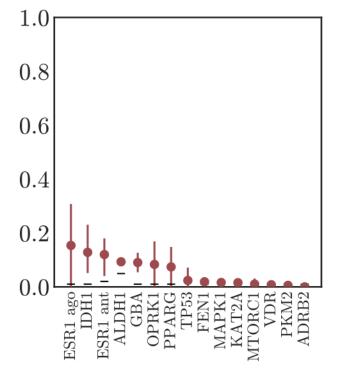
Virtual Screening with GNINA 1.0

A 3000
166

Model	DUD-E		LIT-PCBA			
Model	AUC	NEF1%	EF1%	AUC	NEF1%	EF1%
RFScore-4	0.683	0.0514	3.02	0.6	0.013	1.28
RFScore-VS	0.963	0.857	51.9	0.542	0.00733	0.733
Vina	0.745	0.118	7.05	0.581	0.011	1.1
Vinardo	0.764	0.187	11.4	0.577	0.0103	0.99
General (Affinity)	0.756	0.179	11.6	0.579	0.037	2.06
General (Pose)	0.702	0.156	10.3	0.498	0.0147	1.3
Dense (Affinity)	0.795	0.27	17.7	0.616	0.037	2.58
Dense (Pose)	0.767	0.313	20.4	0.514	0.0238	1.81
Default (Affinity)	0.795	0.258	15.6	0.611	0.0238	1.88
Default (Pose)	0.744	0.241	15.8	0.512	0.0147	1.47

Default (Affinity)





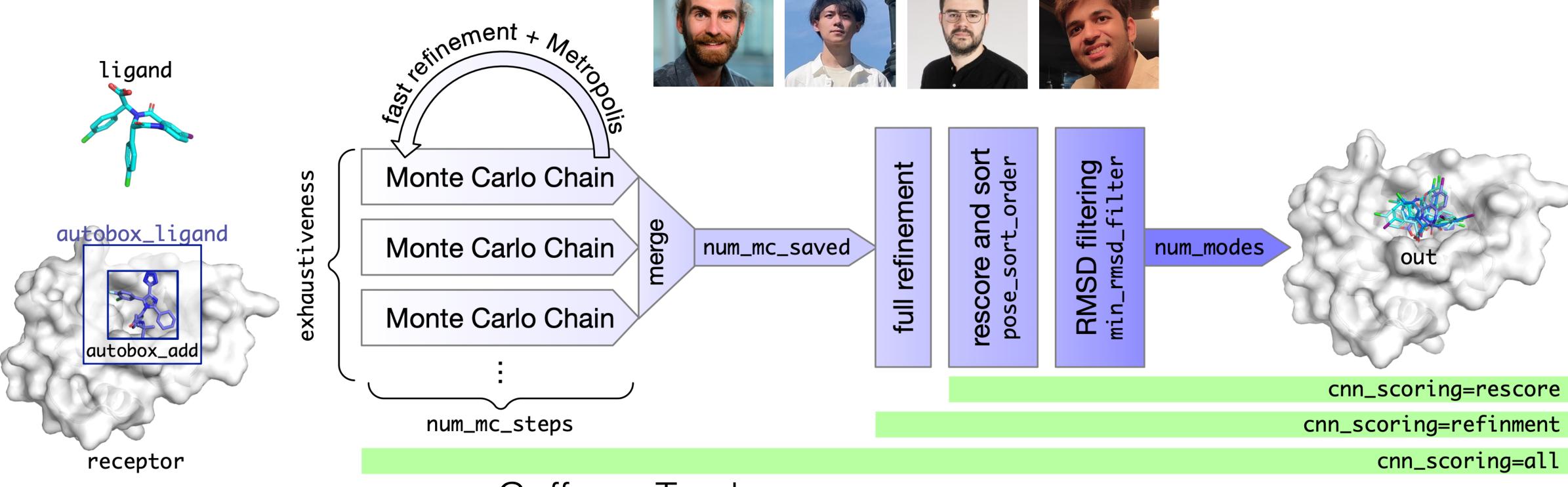
GNINA 1.3

https://github.com/gnina/gnina

GNINA 1.3: the next increment in molecular docking with deep learning

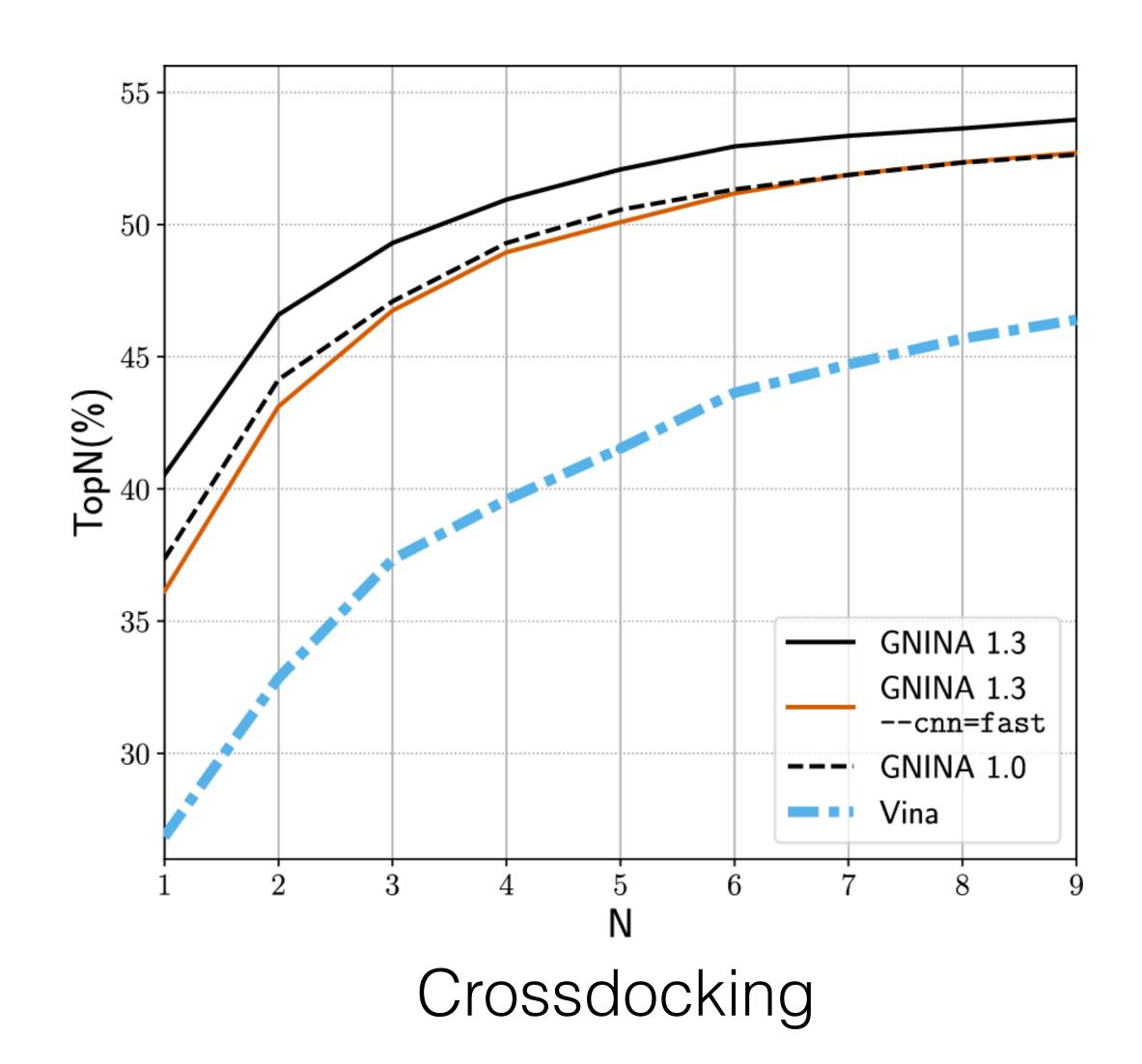
Andrew T. McNutt, Yanjing Li, Rocco Meli, Rishal Aggarwal & David Ryan Koes □

Journal of Cheminformatics 17, Article number: 28 (2025) Cite this article



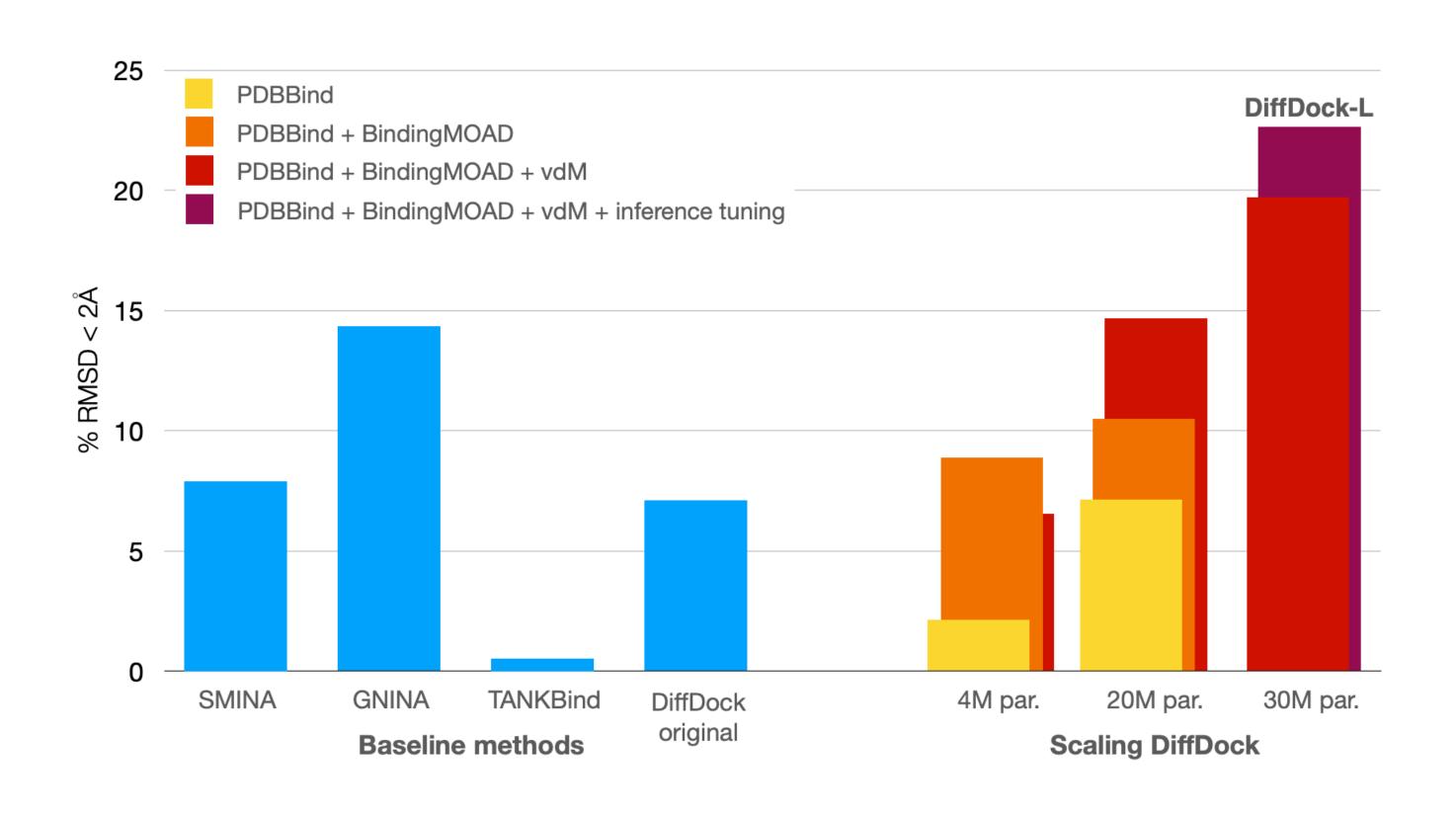
Caffe → Torch
easy covalent docking
retrained models

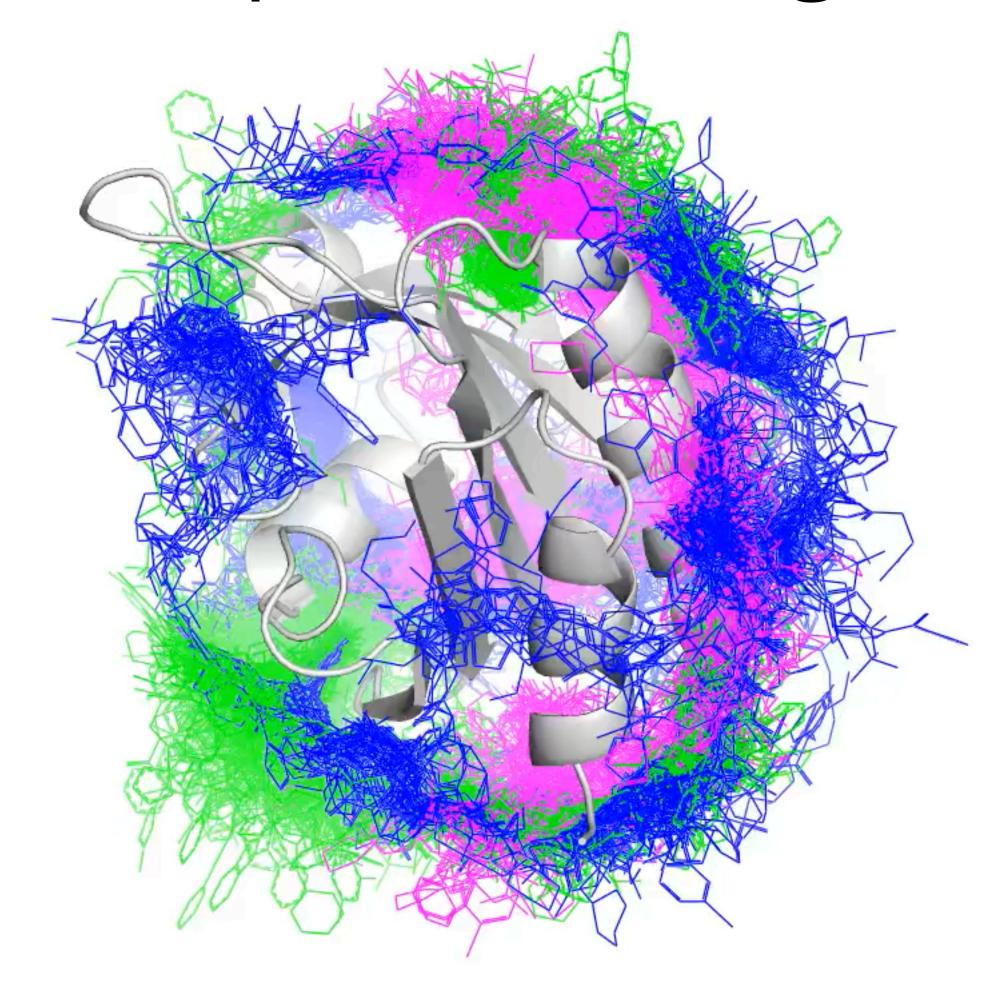
GNINA 1.3 Performance



1.0 0.9-0.8-O.7 0.6-0.5 -0.4-**GNINA 1.0 GNINA 1.3 GNINA 1.3** -- cnn = fast

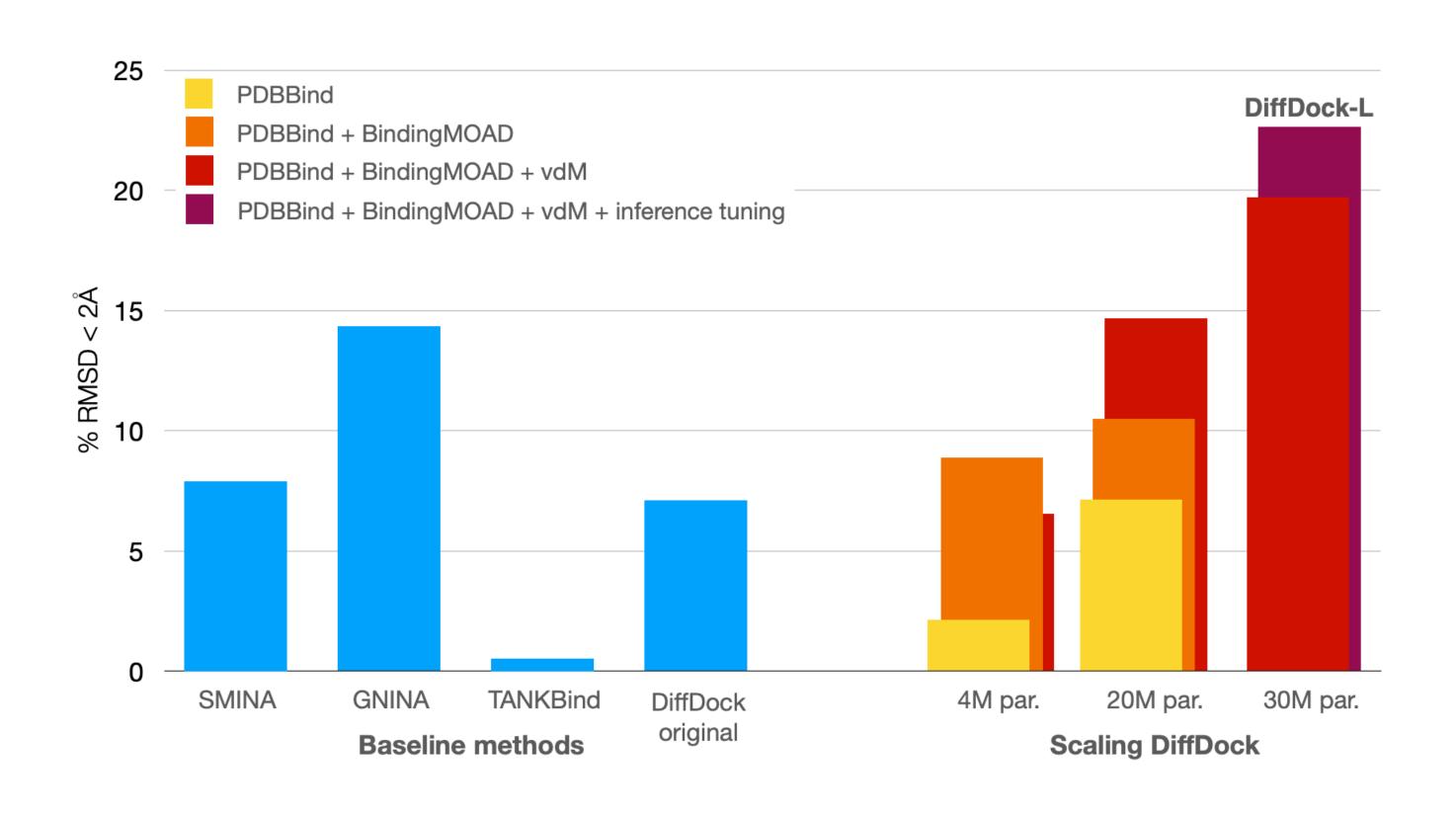
GNINA vs End-to-end Deep Docking

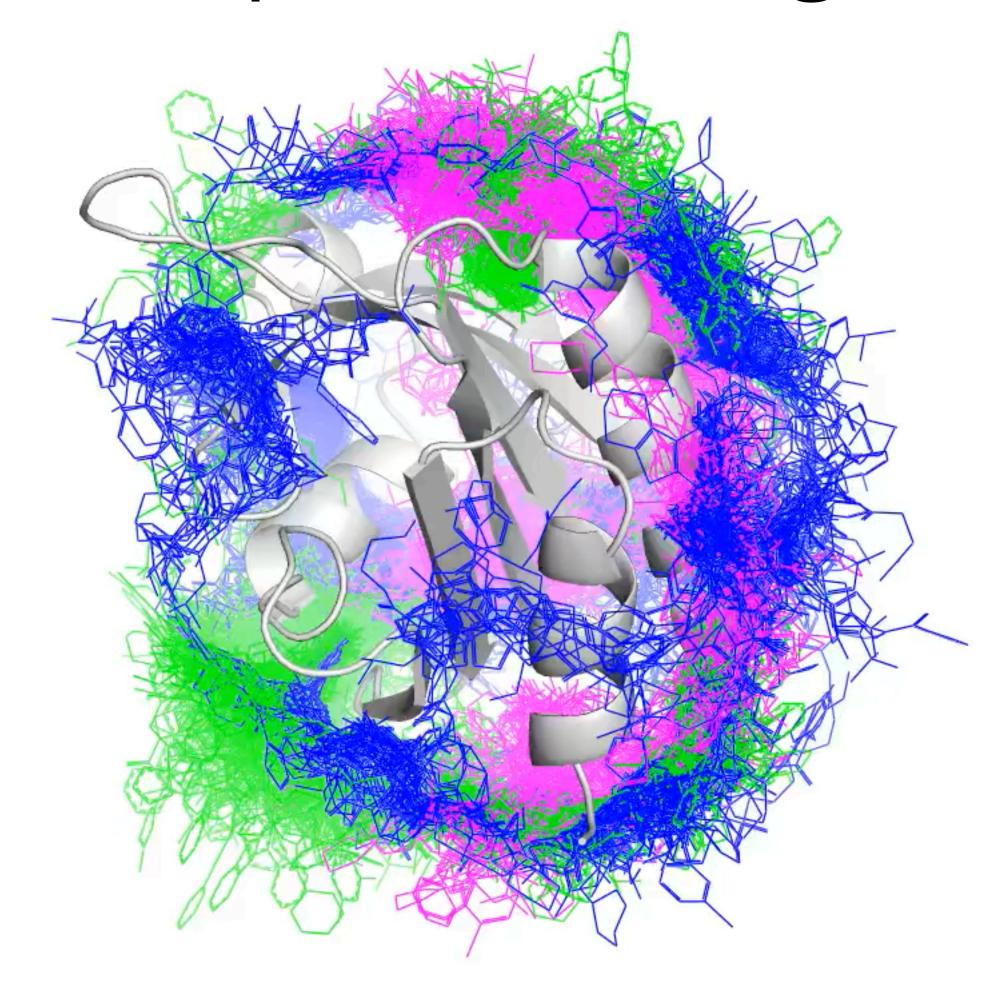




GNINA DynamicBind Boltz1

GNINA vs End-to-end Deep Docking





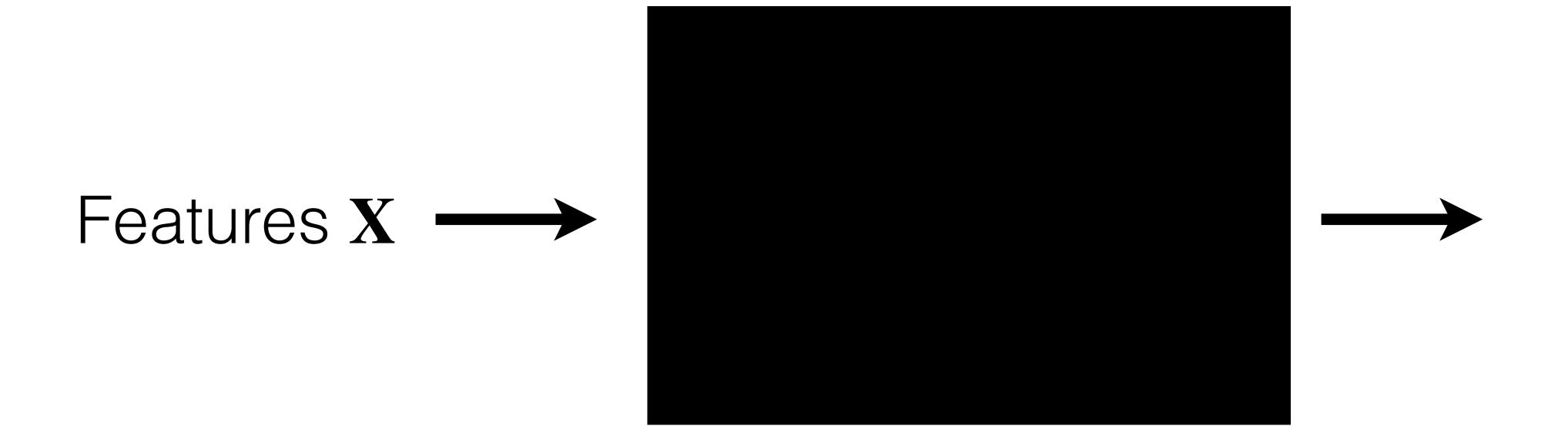
GNINA DynamicBind Boltz1

Generative Modeling

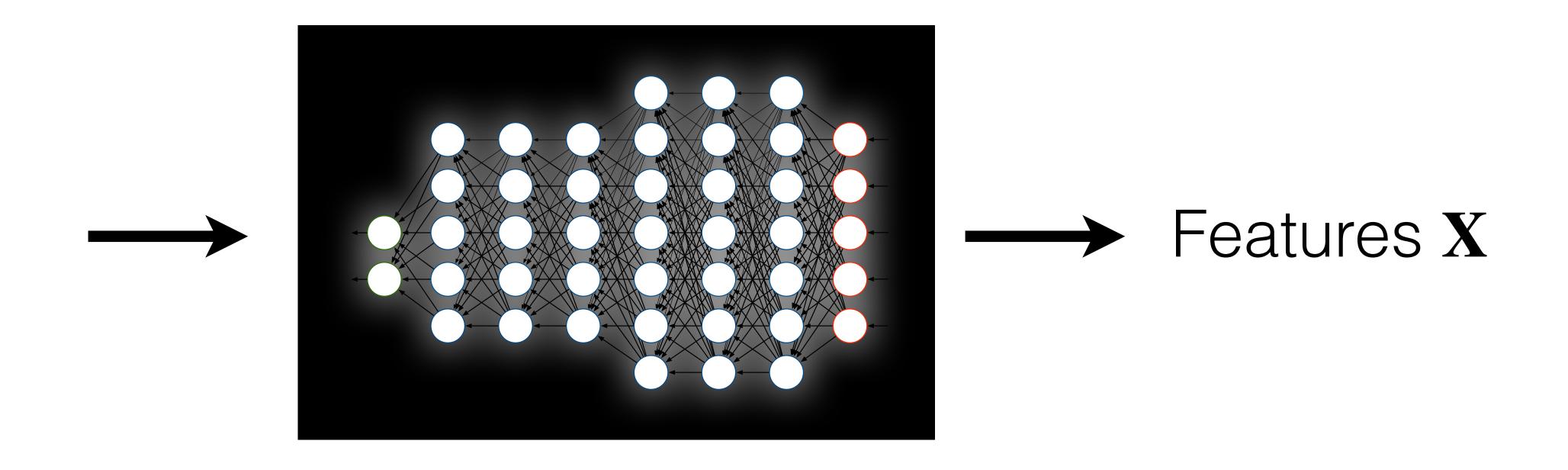
Discriminative Model

Features $\mathbf{X} \longrightarrow$ Prediction \mathbf{y}

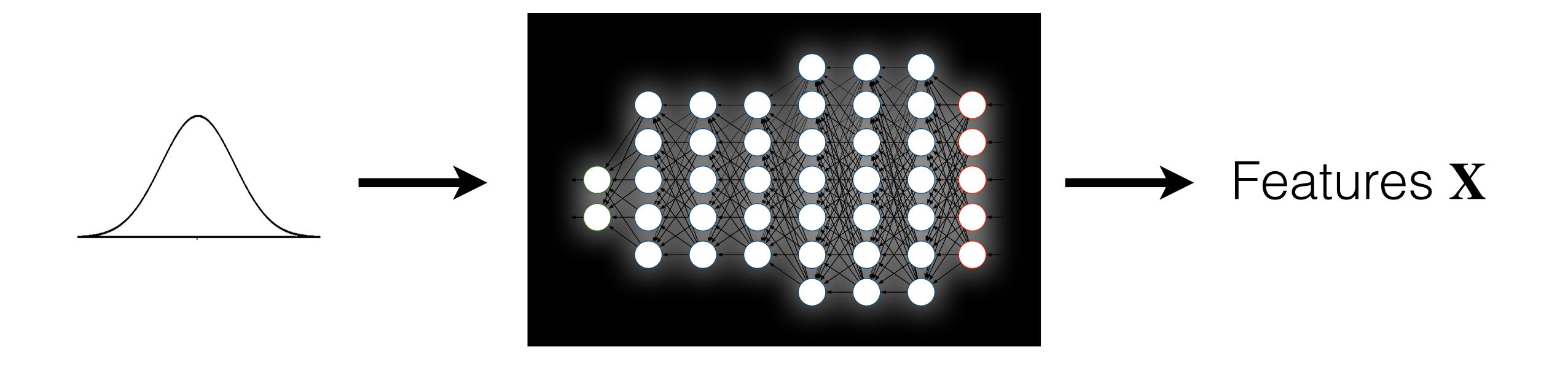
Generative Model



Generative Model



Generative Model



Learning a Continuous Representation of 3D Molecular Structures with Deep Generative Models

Matthew Ragoza*

Comp. & Systems Biology University of Pittsburgh Pittsburgh, PA 15213 mtr22@pitt.edu

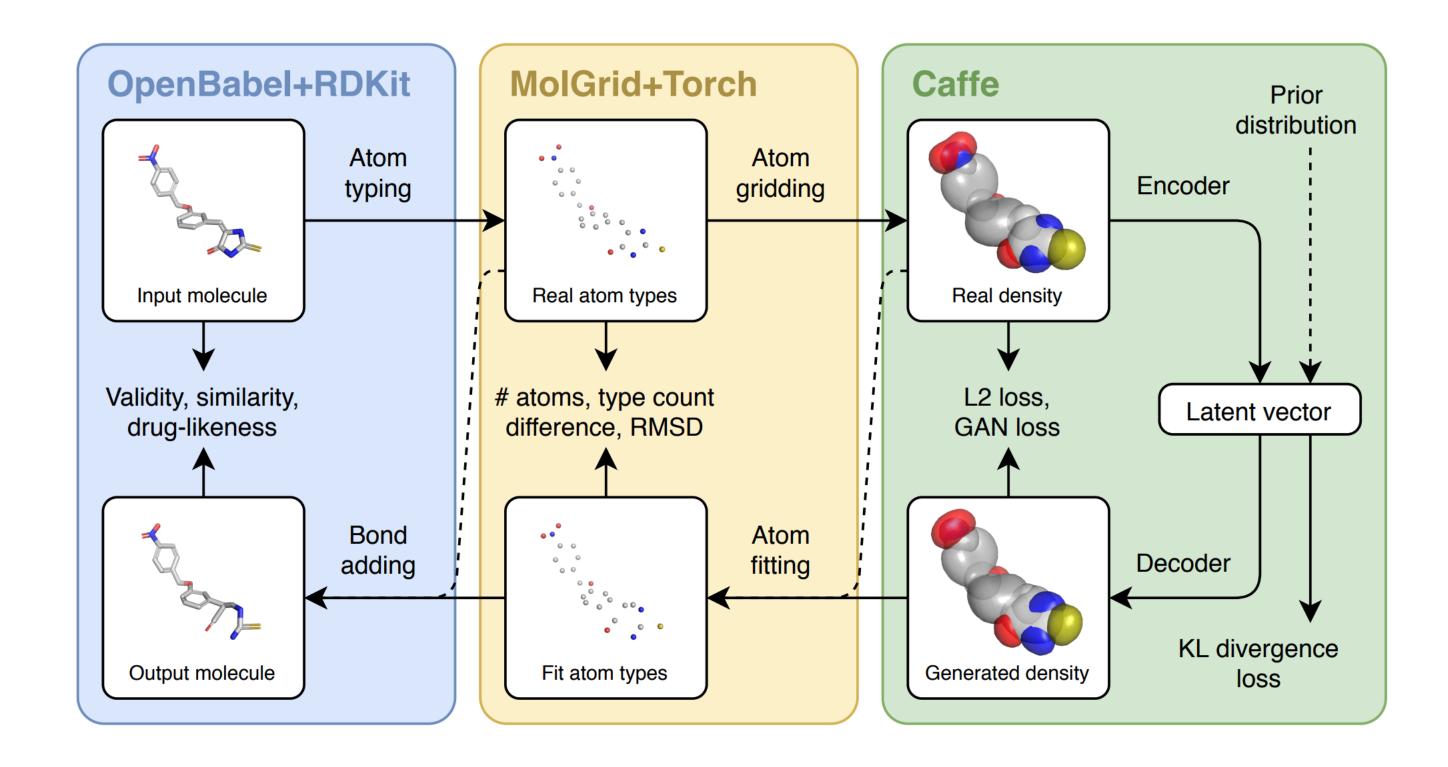
Tomohide Masuda*

Comp. & Systems Biology University of Pittsburgh Pittsburgh, PA 15213 tmasuda@pitt.edu

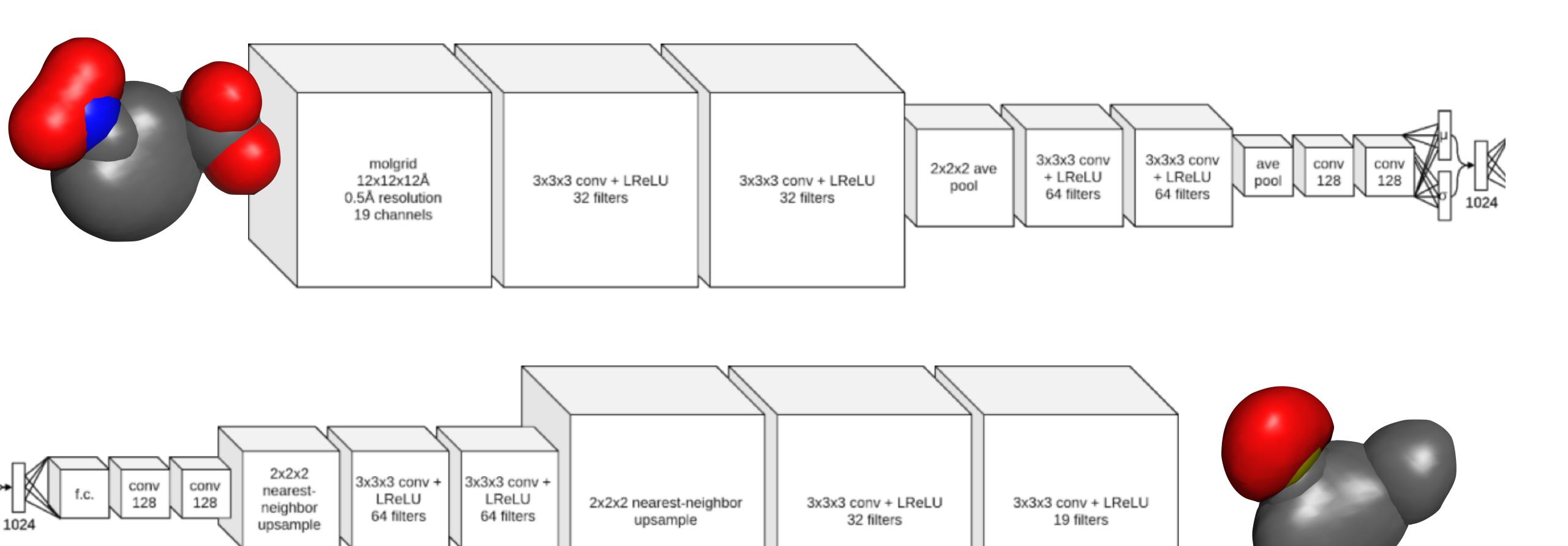
David Ryan Koes

Comp. & Systems Biology
University of Pittsburgh
Pittsburgh, PA 15213
dkoes@pitt.edu

NeurIPS 2020 Workshop Machine Learning for Structural Biology

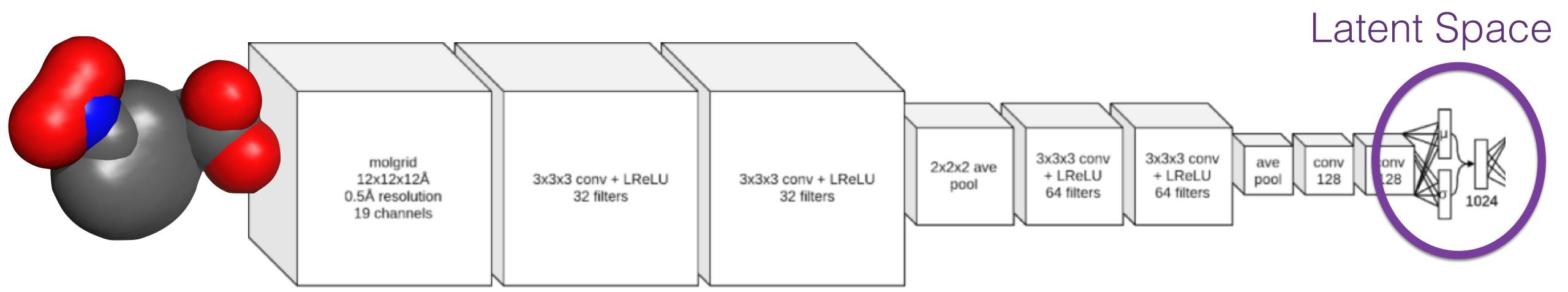


Model

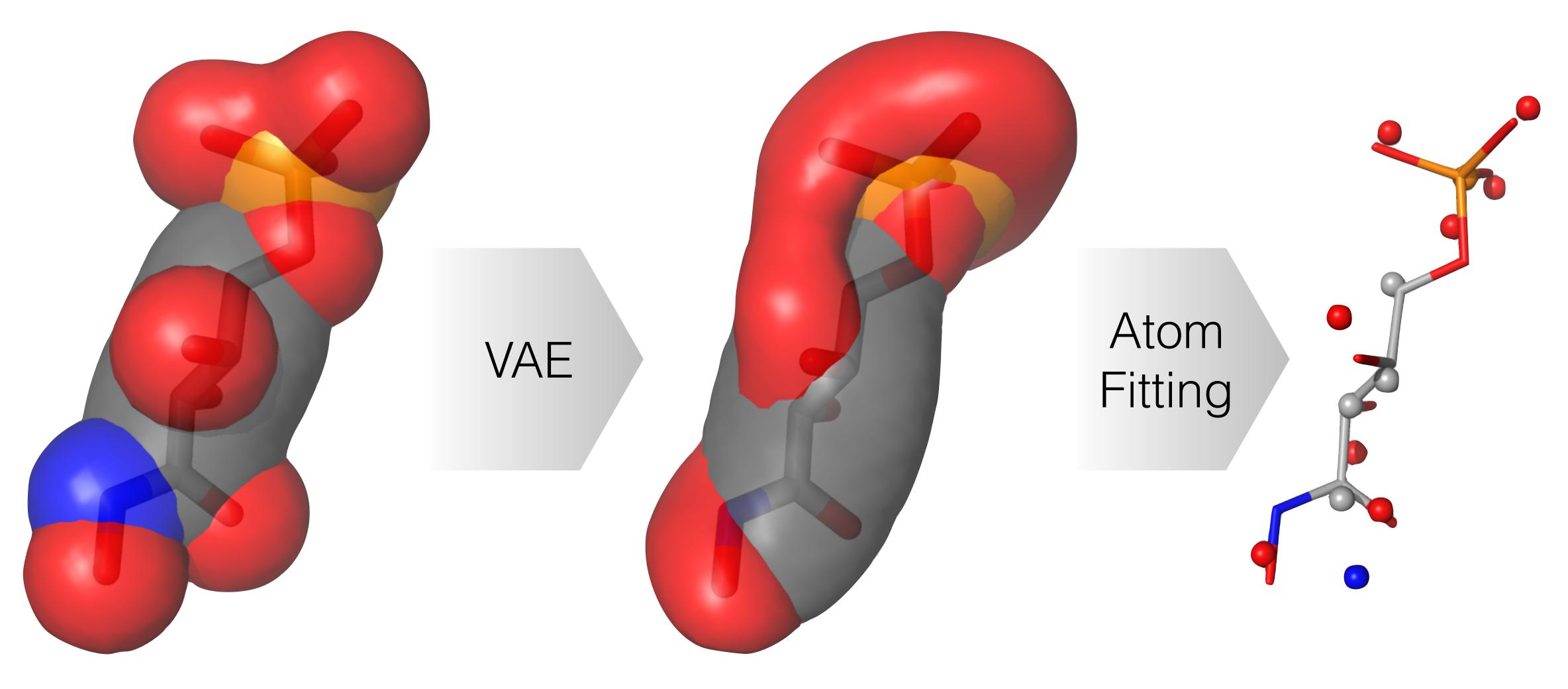


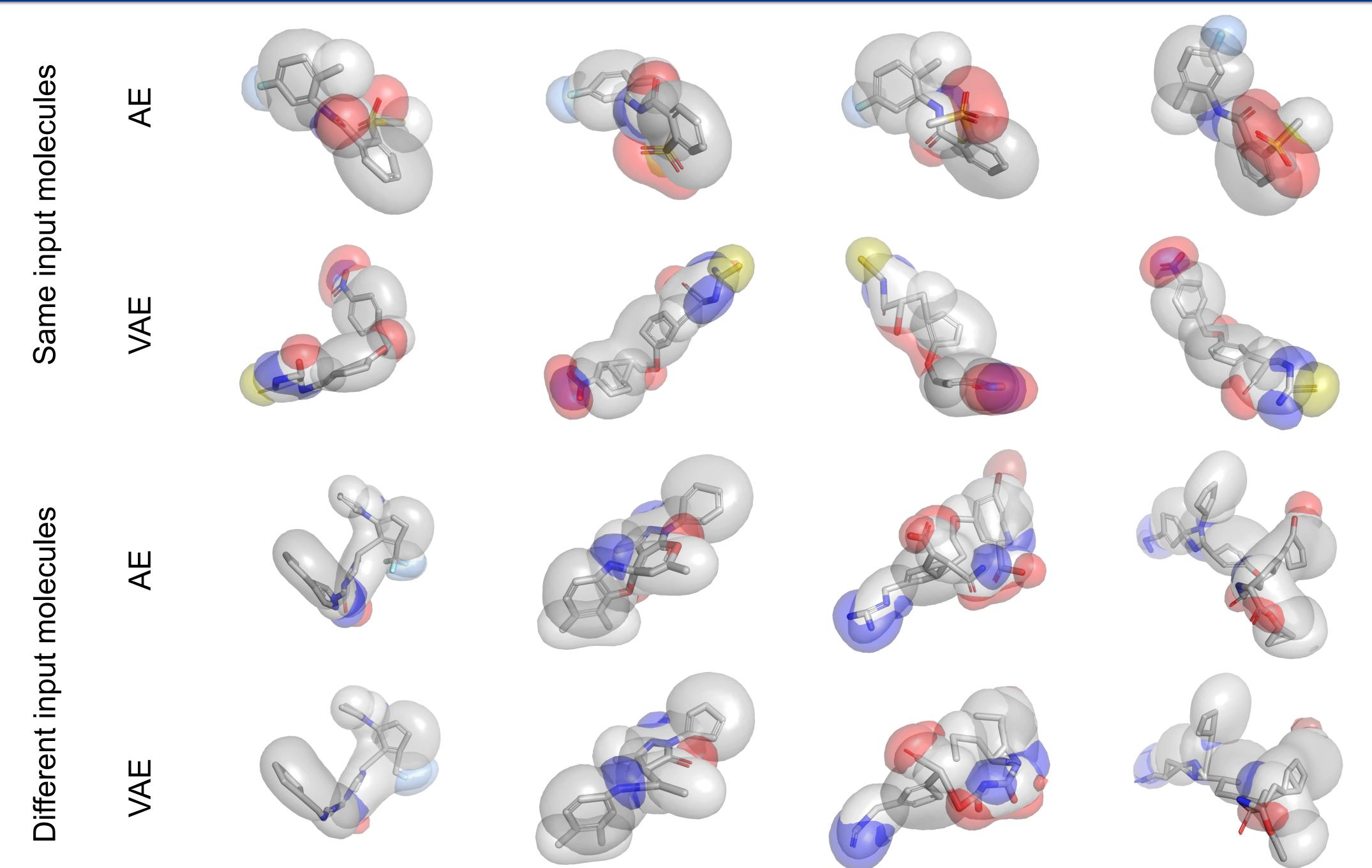
Variational

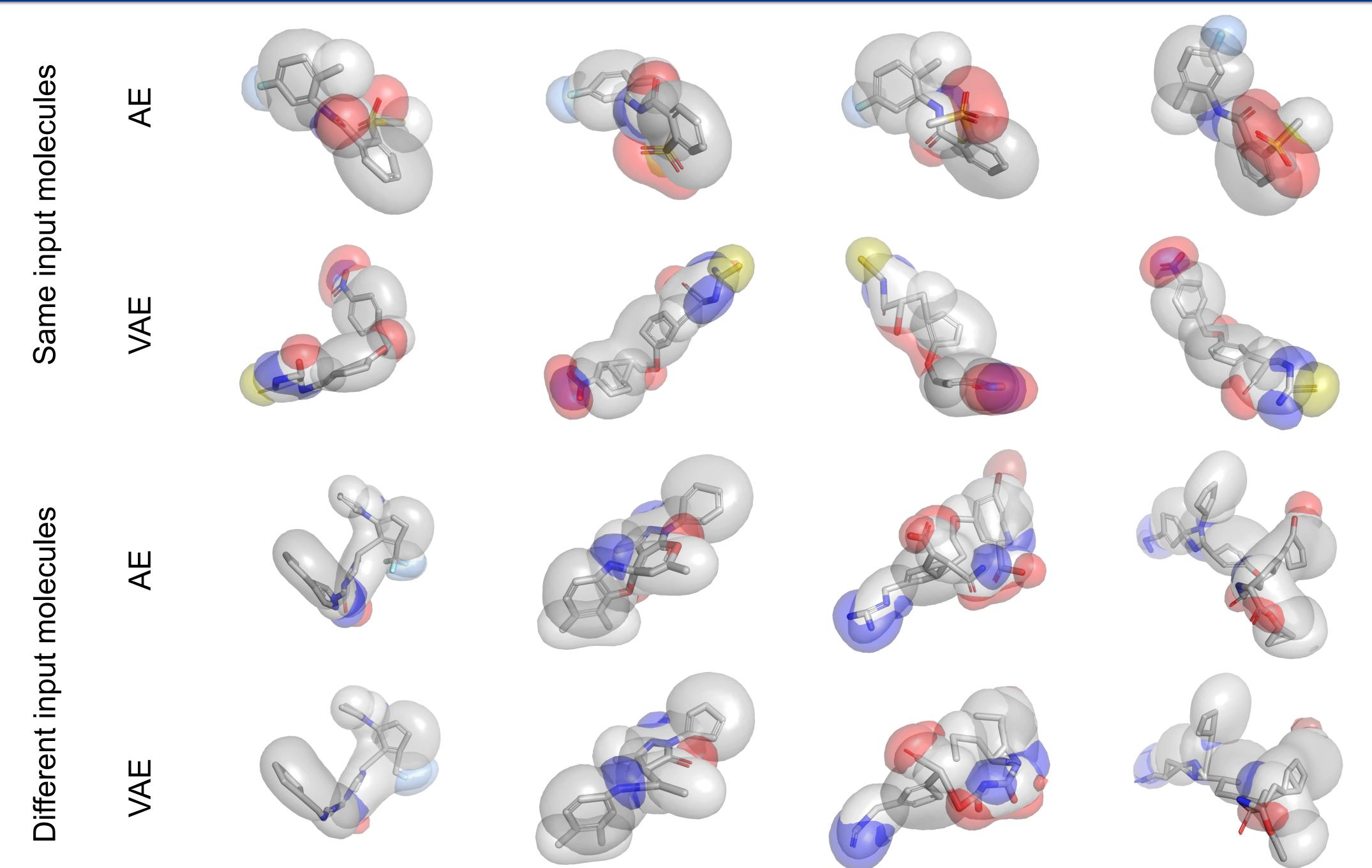
Model



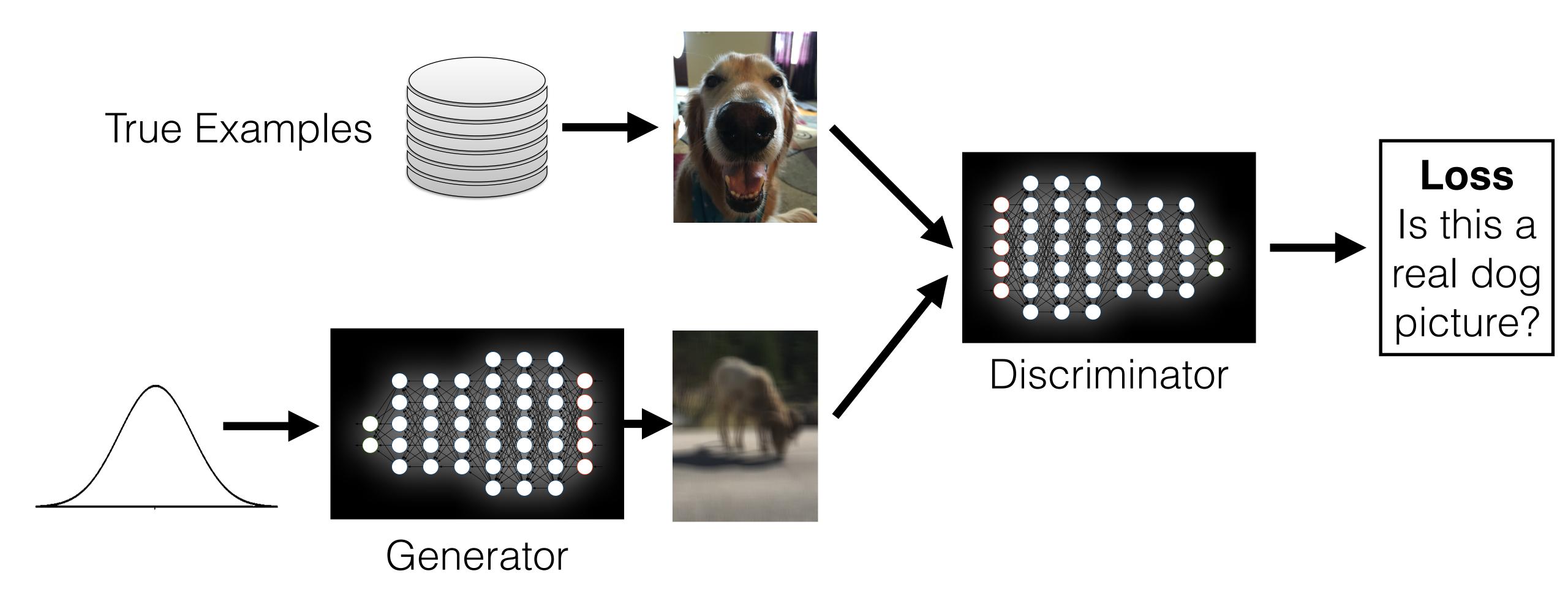
Variational Autoencoding Examples



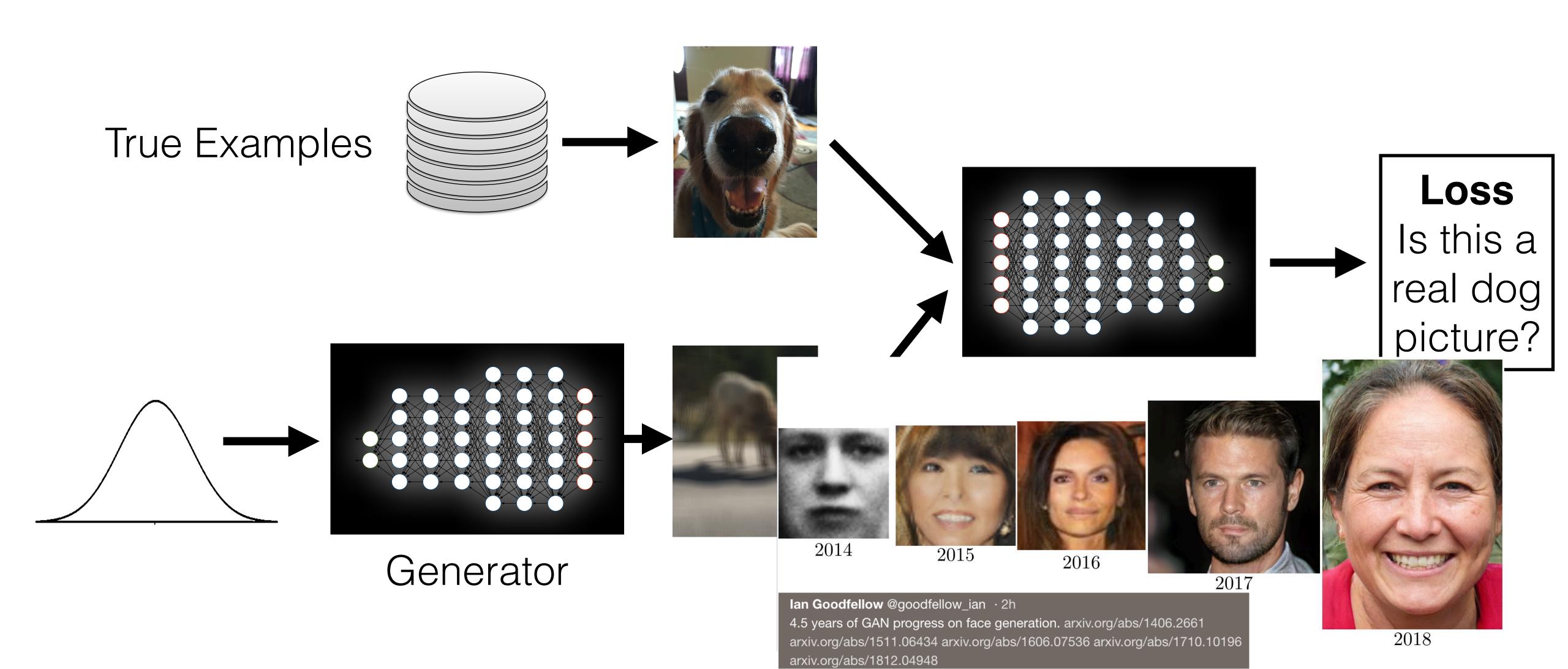


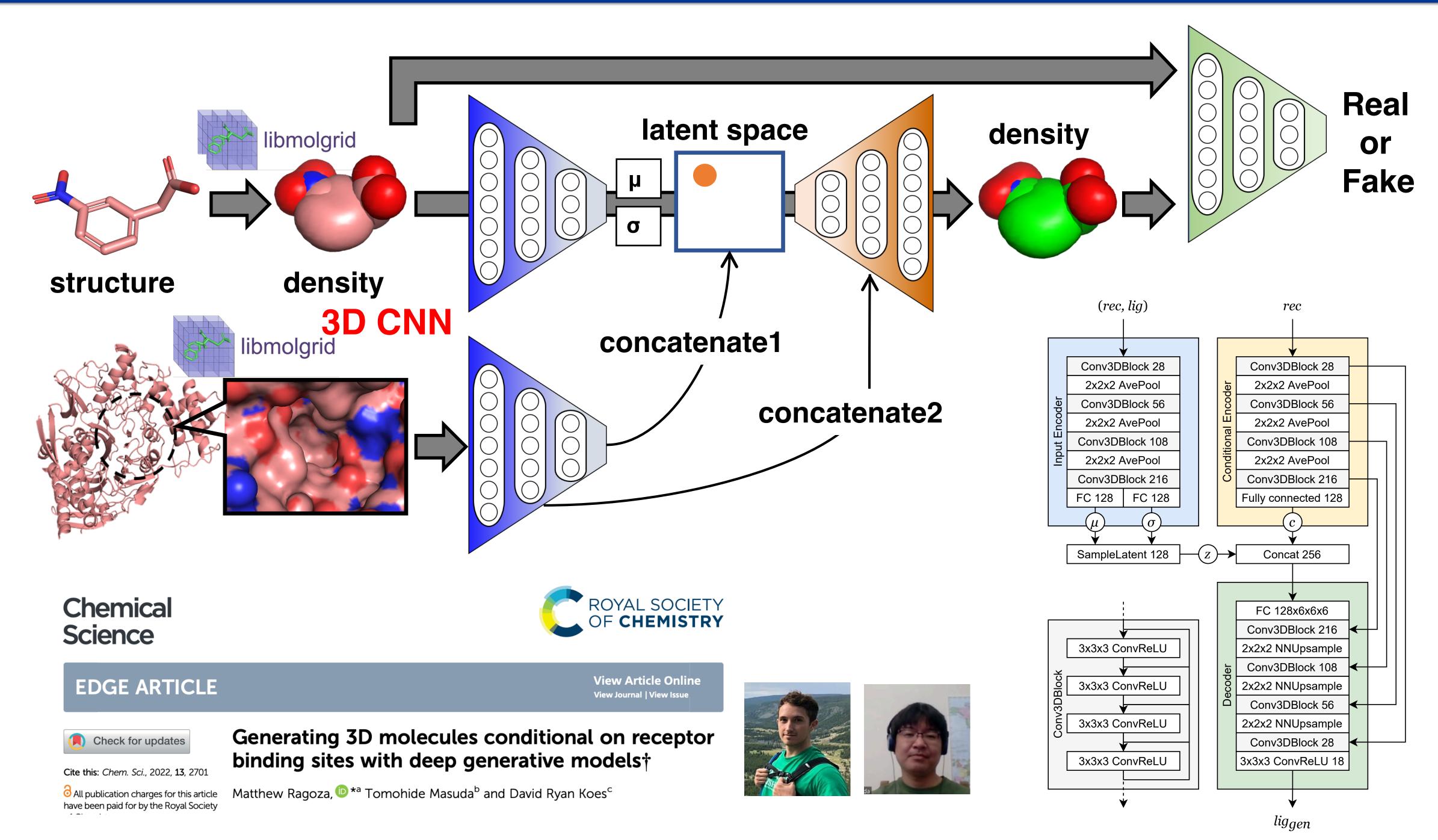


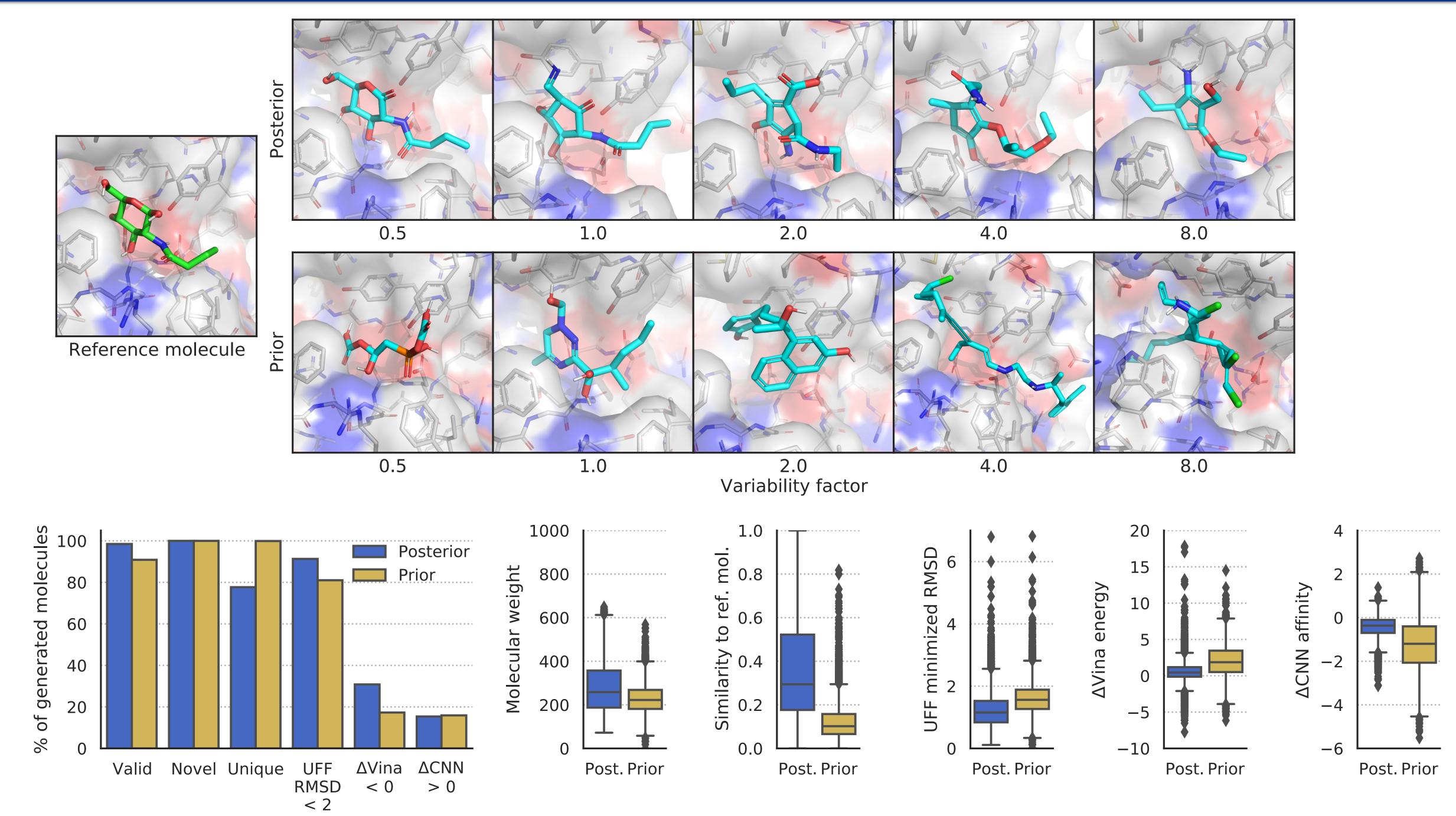
Generative Adversarial Networks

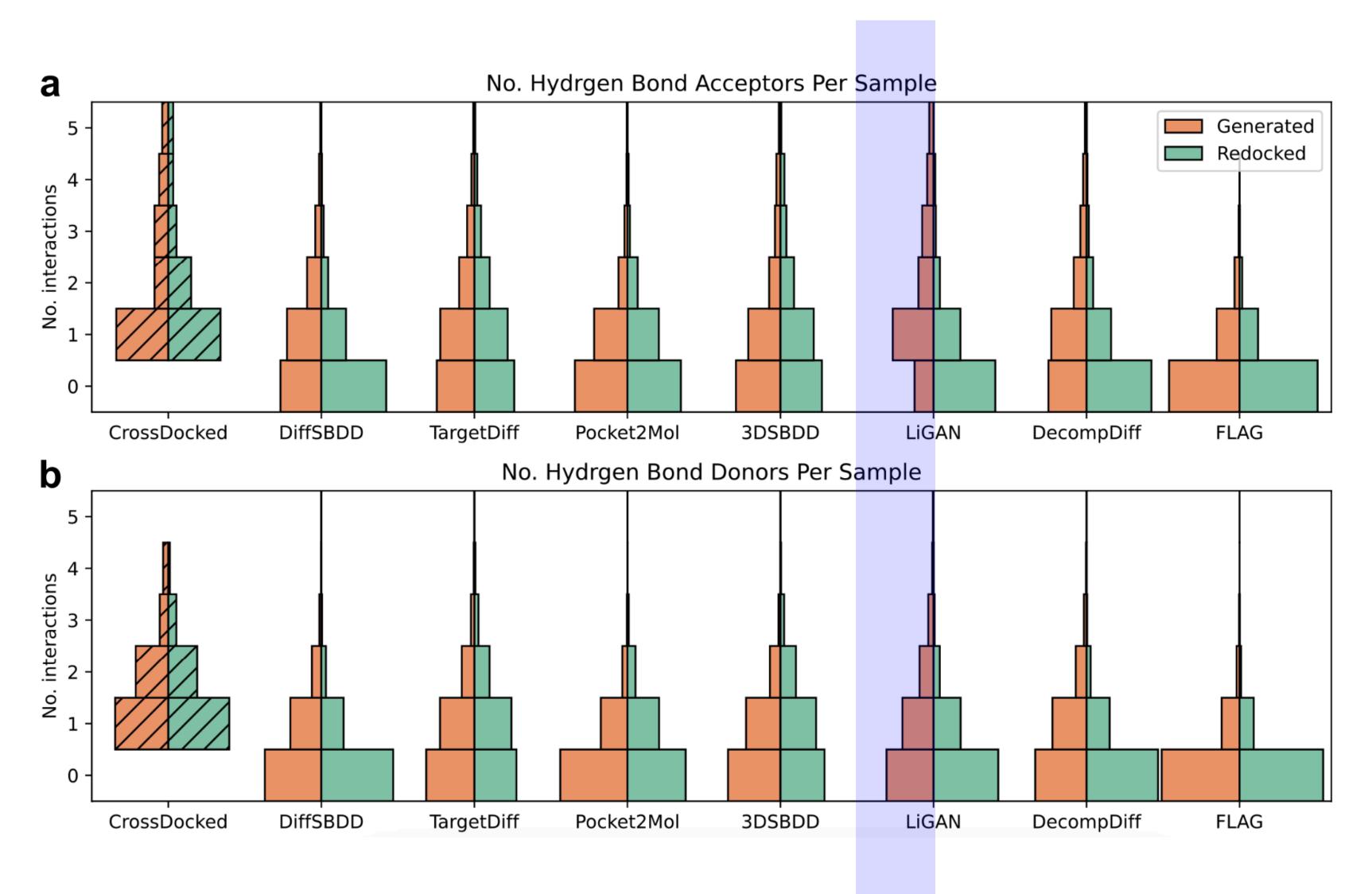


Generative Adversarial Networks









PoseCheck: Generative Models for 3D Structure-based Drug Design Produce Unrealistic Poses

Charles Harris*
University of Cambridge
cch57@cam.ac.uk

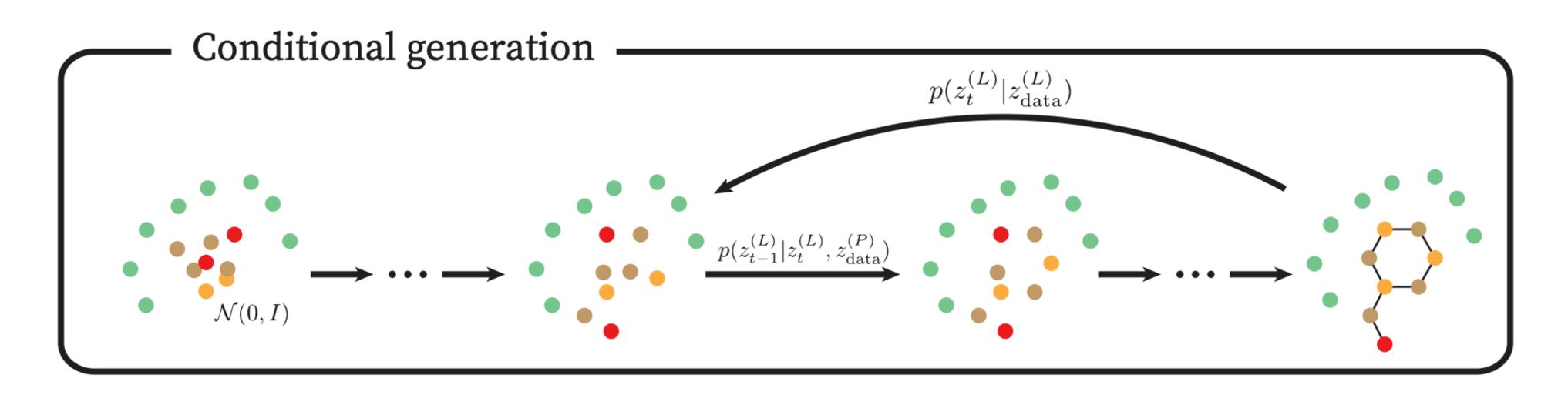
Kieran Didi University of Cambridge ked48@cam.ac.uk Arian R. Jamasb University of Cambridge arj39@cam.ac.uk

Chaitanya K. Joshi University of Cambridge ckj24@cam.ac.uk

Pietro Lio University of Cambridge pl219@cam.ac.uk Simon V. Mathis
University of Cambridge
svm34@cam.ac.uk

Tom L. Blundell University of Cambridge tlb20@cam.ac.uk

Diffusion Models



STRUCTURE-BASED DRUG DESIGN WITH EQUIVARIANT DIFFUSION MODELS

Arne Schneuing^{1*}, Yuanqi Du^{2*}, Charles Harris³, Arian Jamasb³, Ilia Igashov¹, Weitao Du⁴, Tom Blundell³, Pietro Lió³, Carla Gomes², Max Welling⁵, Michael Bronstein⁶ & Bruno Correia¹

¹École Polytechnique Fédérale de Lausanne, ²Cornell University, ³University of Cambridge, ⁴USTC, ⁵Microsoft Research AI4Science, ⁶University of Oxford

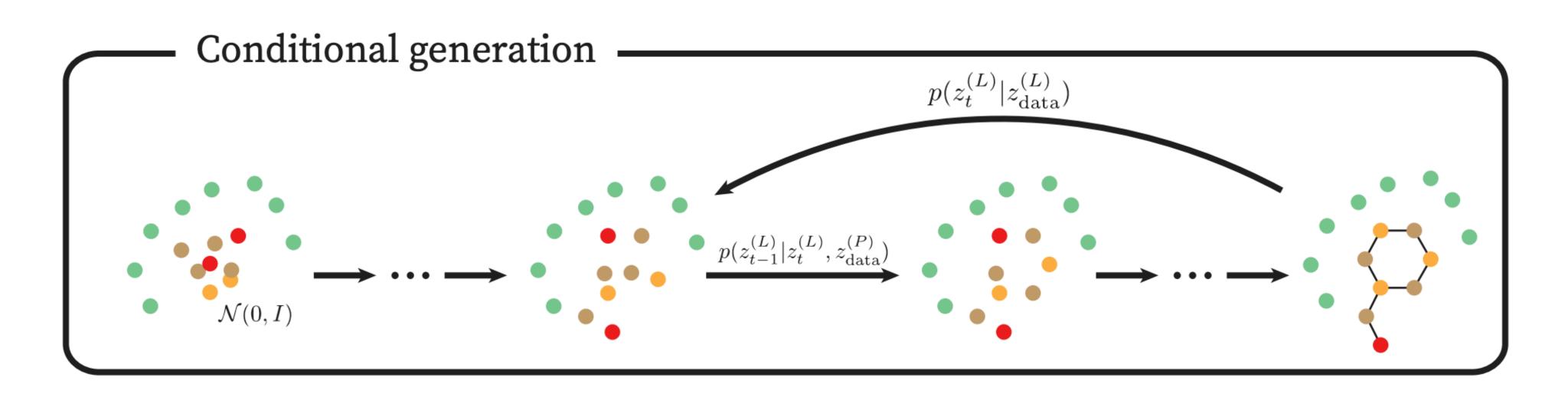
Quantitative Biology > Biomolecules

[Submitted on 4 Oct 2022 (v1), last revised 11 Feb 2023 (this version, v2)]

DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, Tommi Jaakkola

Diffusion Models



STRUCTURE-BASED DRUG DESIGN WITH EQUIVARIANT DIFFUSION MODELS

Arne Schneuing^{1*}, Yuanqi Du^{2*}, Charles Harris³, Arian Jamasb³, Ilia Igashov¹, Weitao Du⁴, Tom Blundell³, Pietro Lió³, Carla Gomes², Max Welling⁵, Michael Bronstein⁶ & Bruno Correia¹

¹École Polytechnique Fédérale de Lausanne, ²Cornell University, ³University of Cambridge, ⁴USTC, ⁵Microsoft Research AI4Science, ⁶University of Oxford

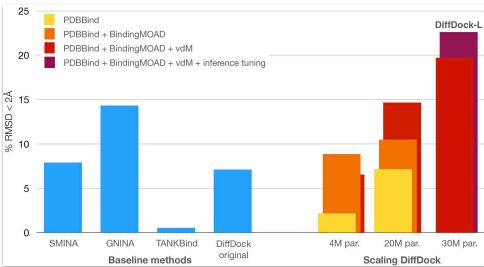
arXiv > q-bio > arXiv:2210.01776

Quantitative Biology > Biomolecules

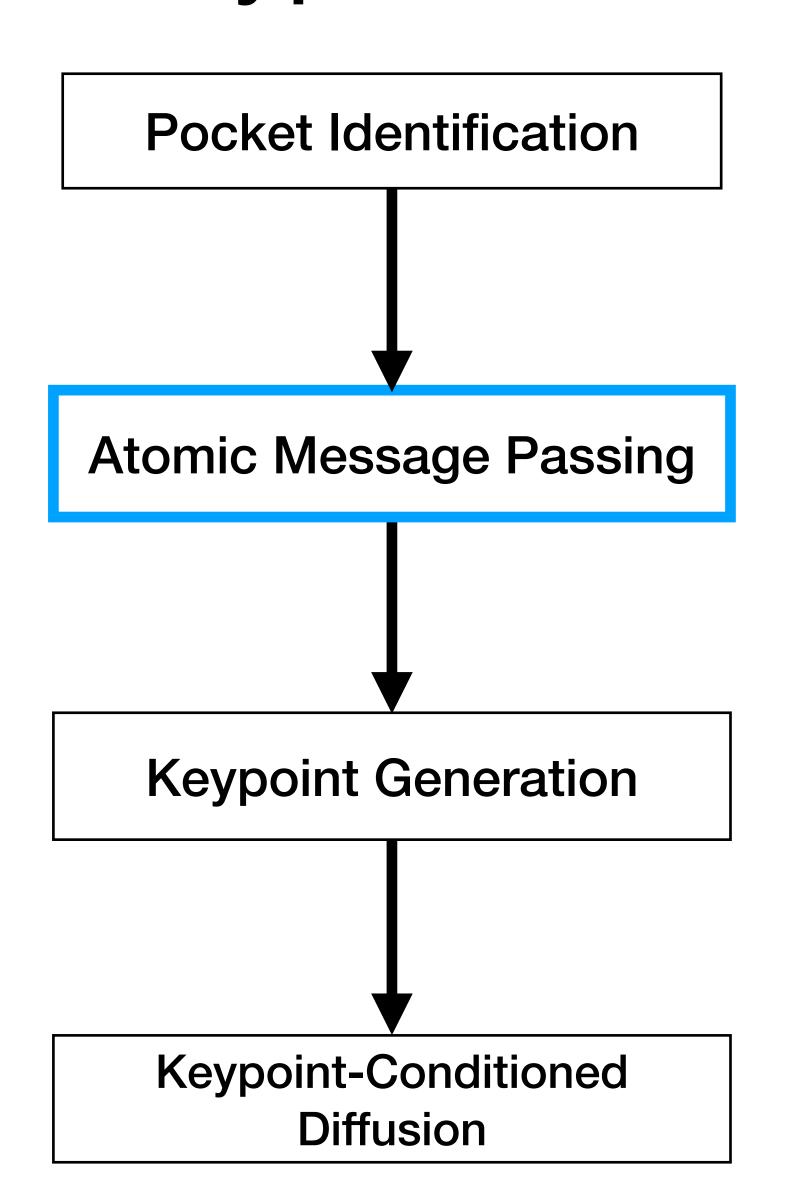
[Submitted on 4 Oct 2022 (v1), last revised 11 Feb 2023 (this version, v2)]

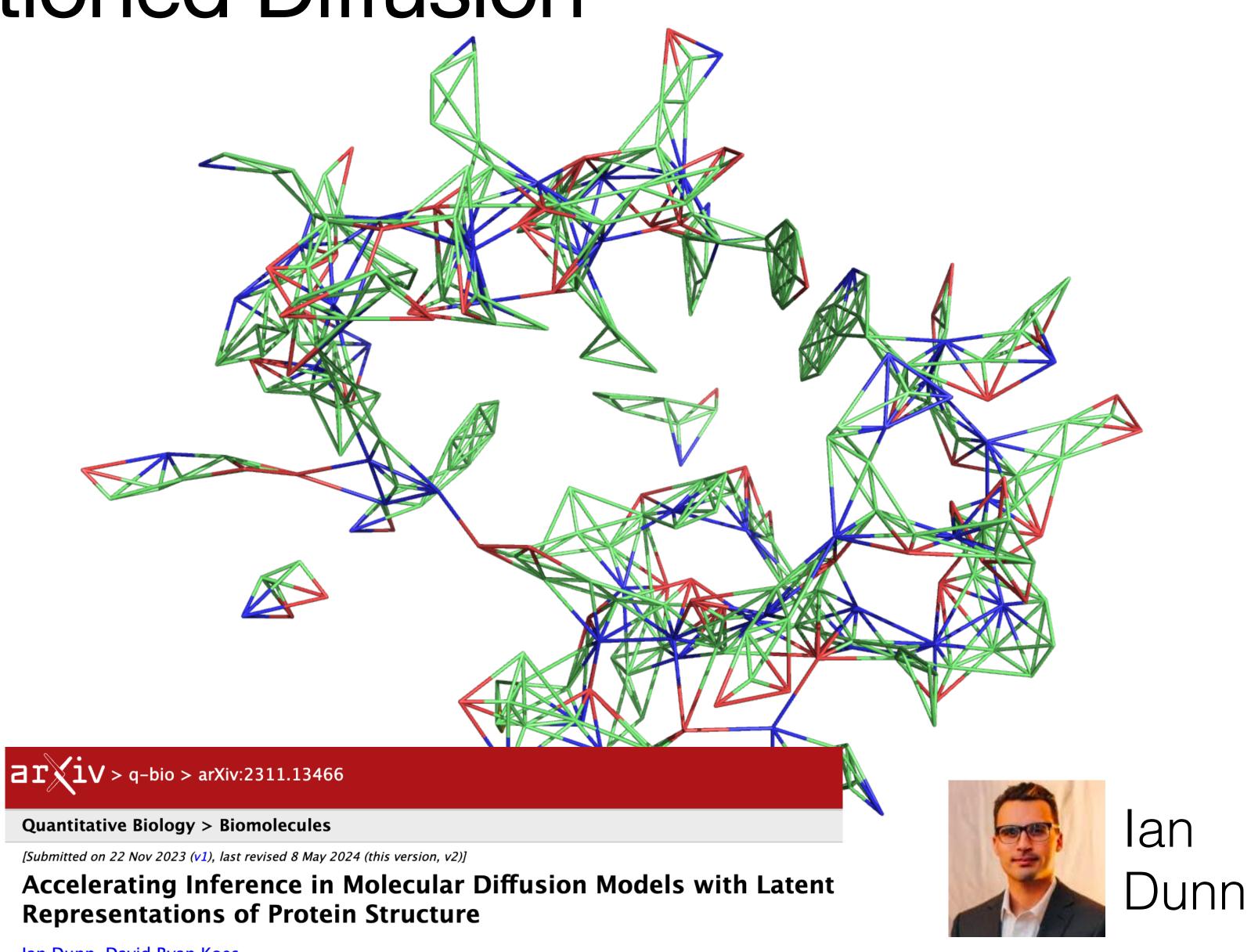
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, Tommi Jaakkola

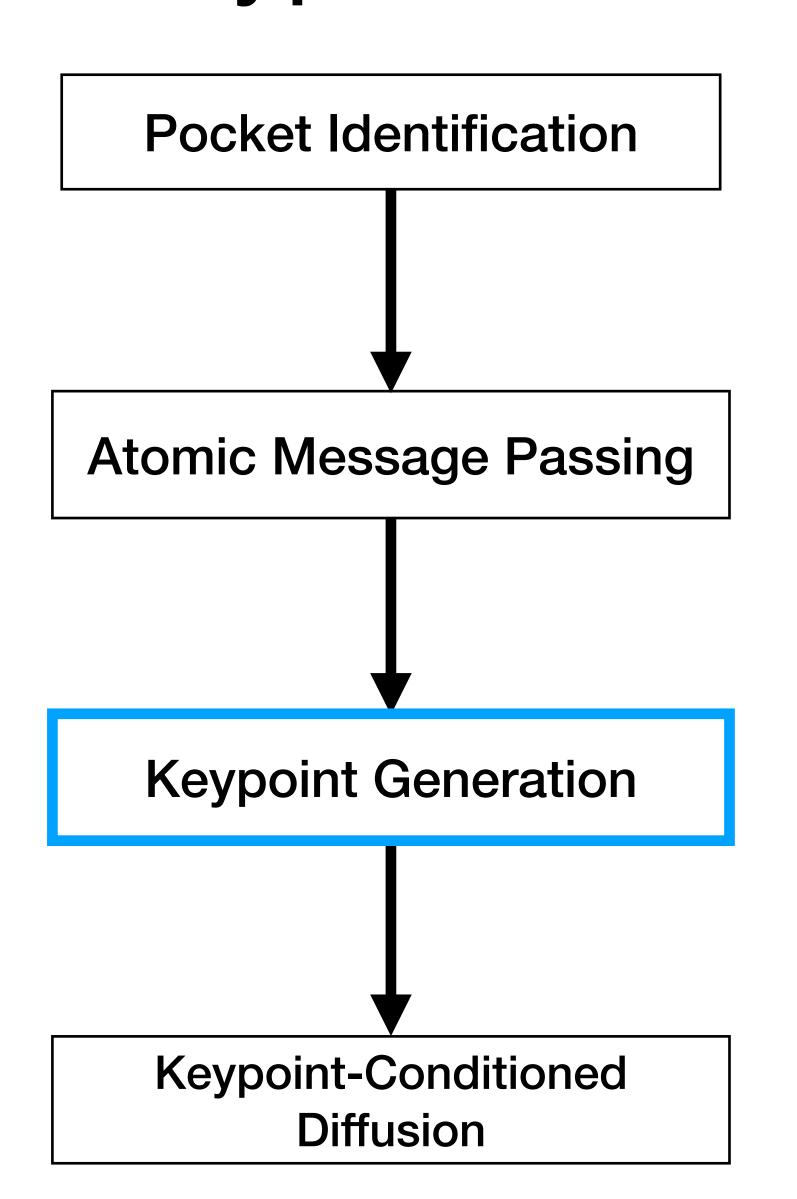


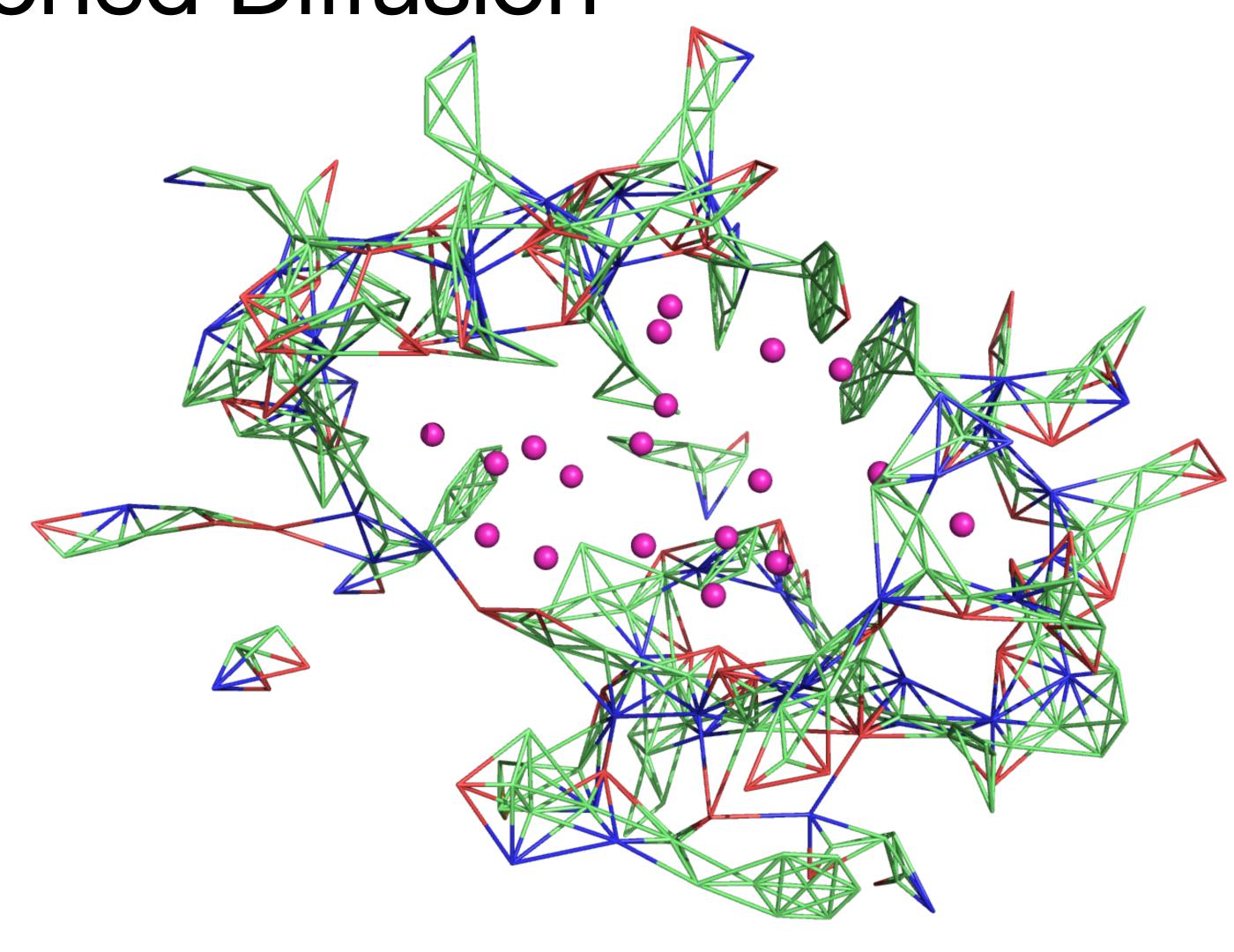
Keypoint Conditioned Diffusion

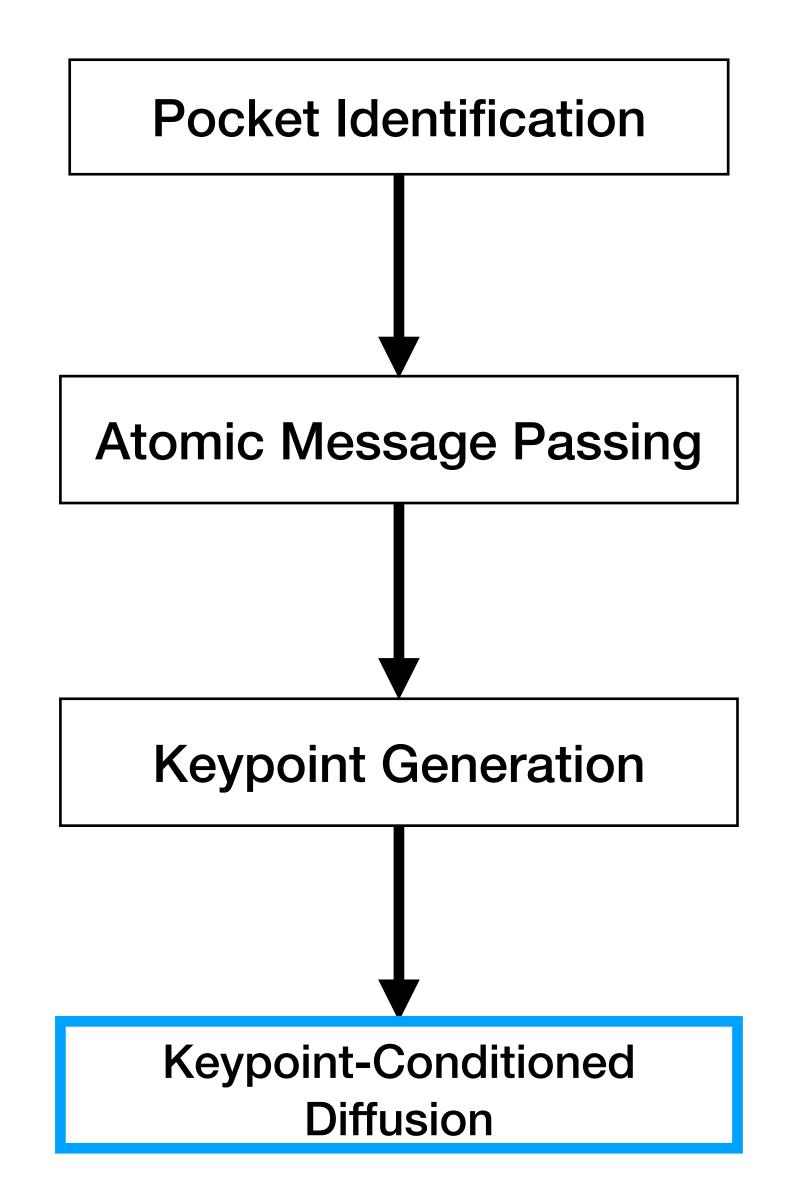


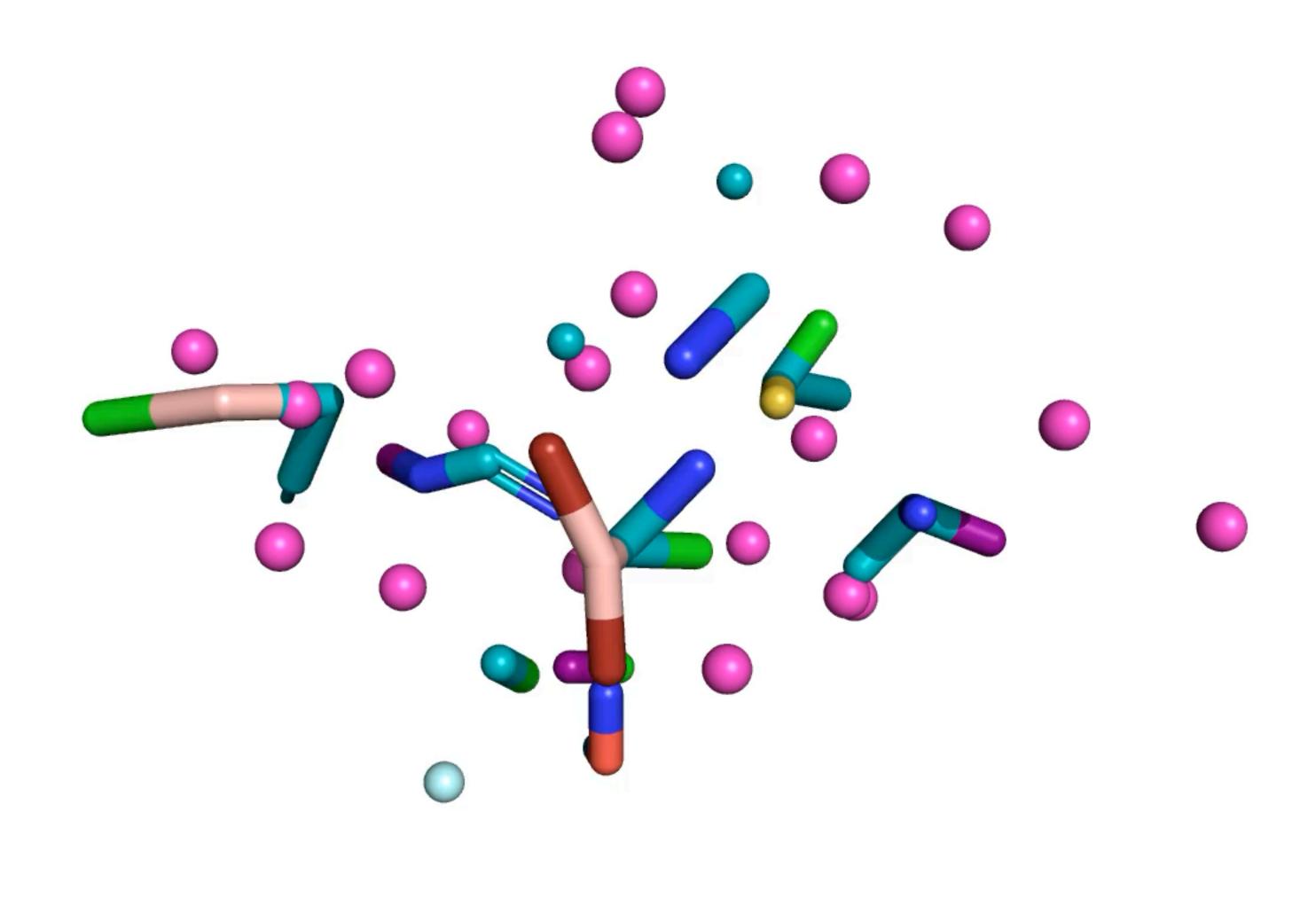


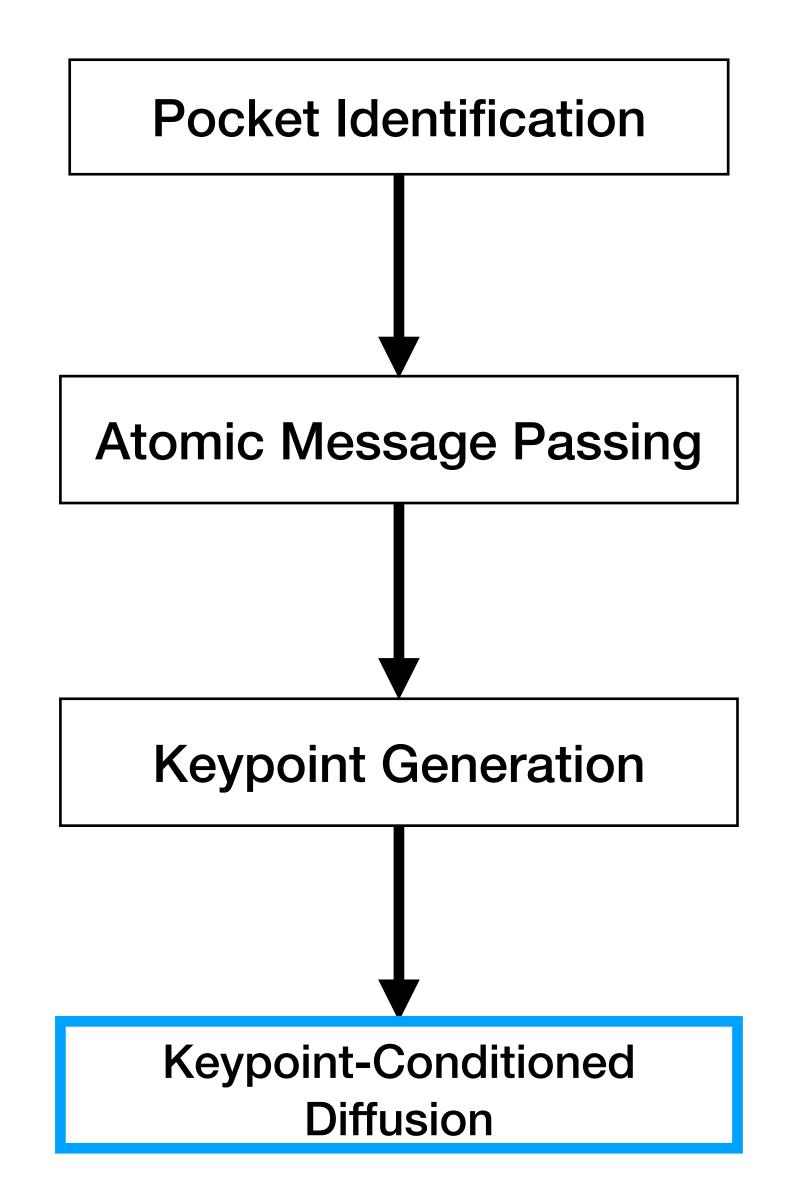
lan Dunn, David Ryan Koes

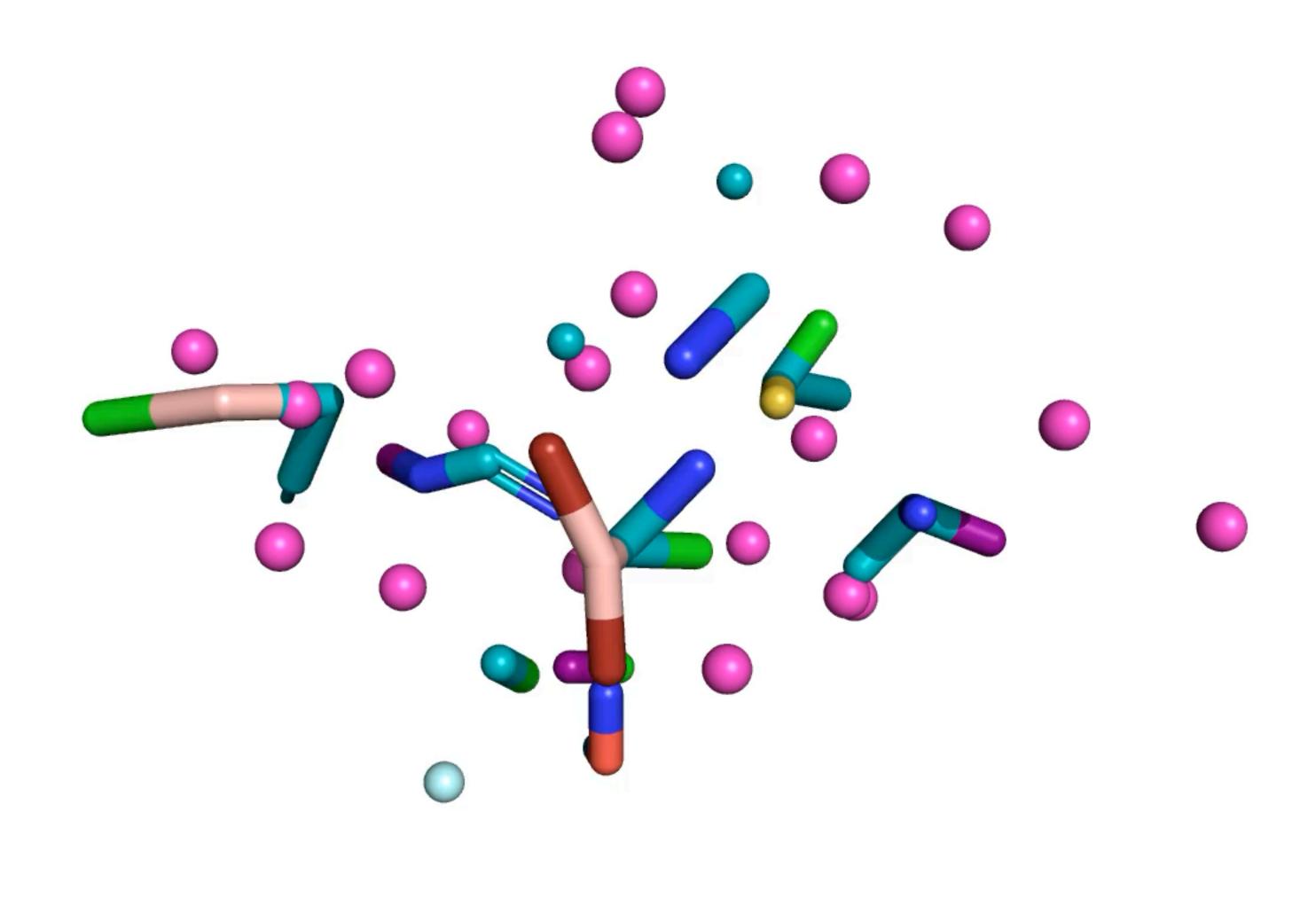


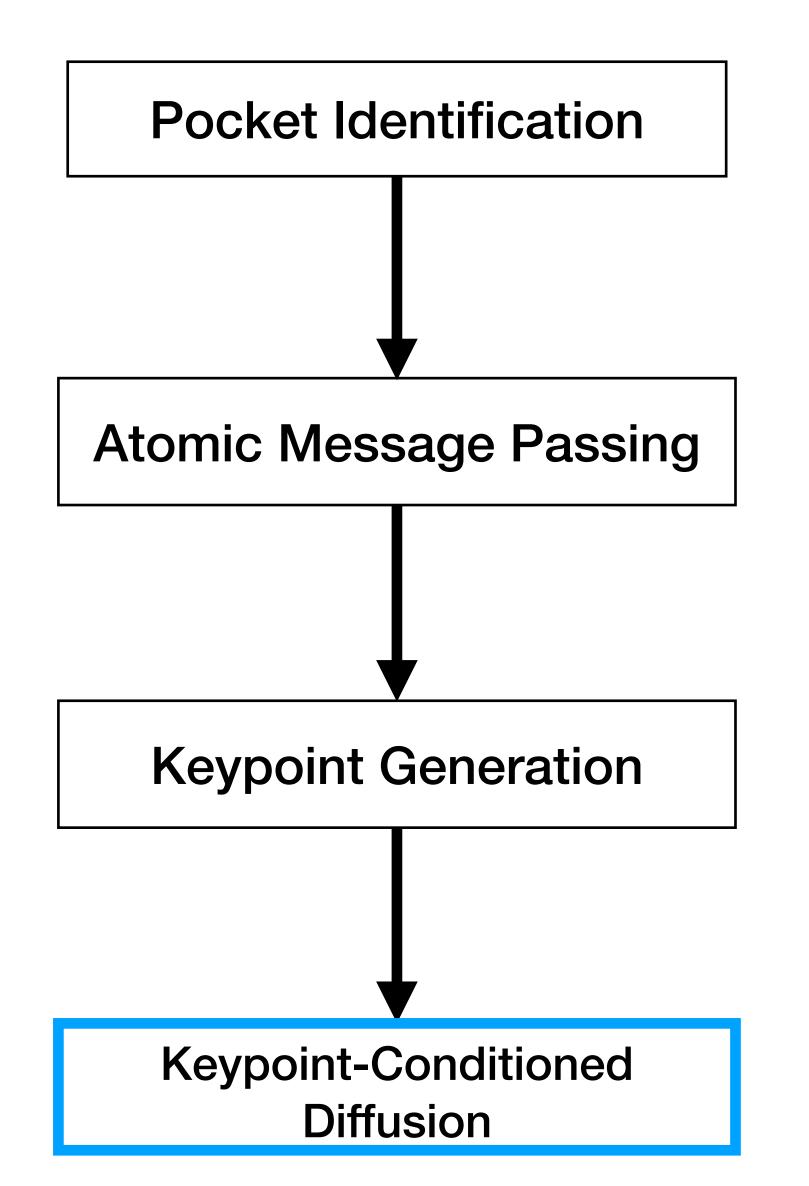


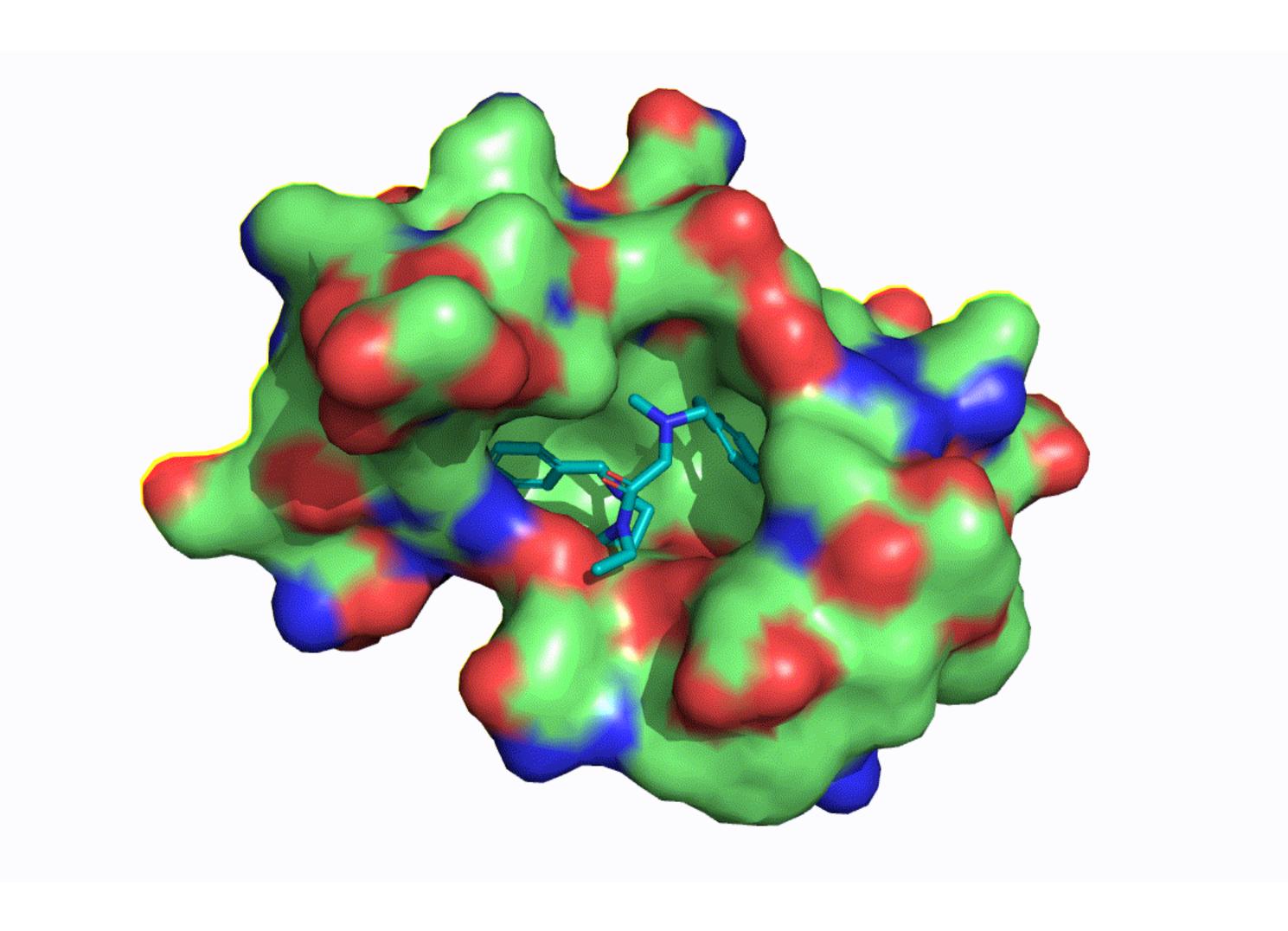


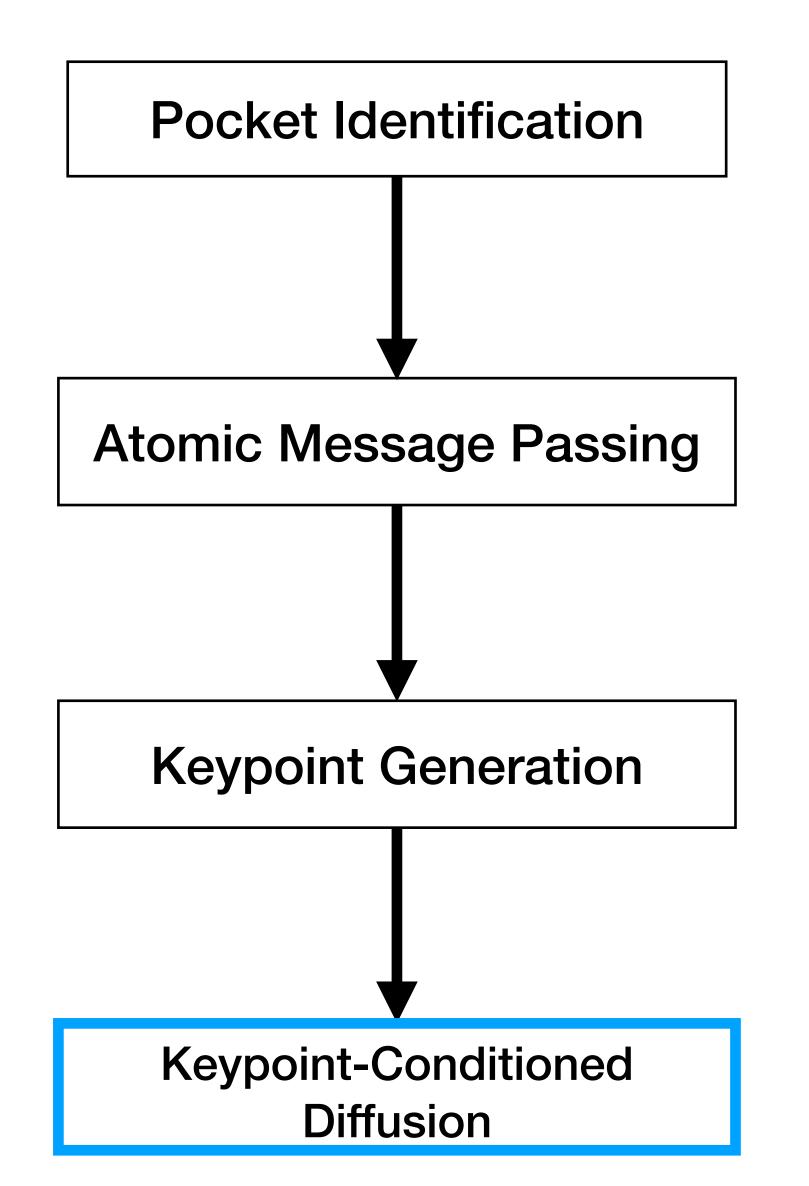


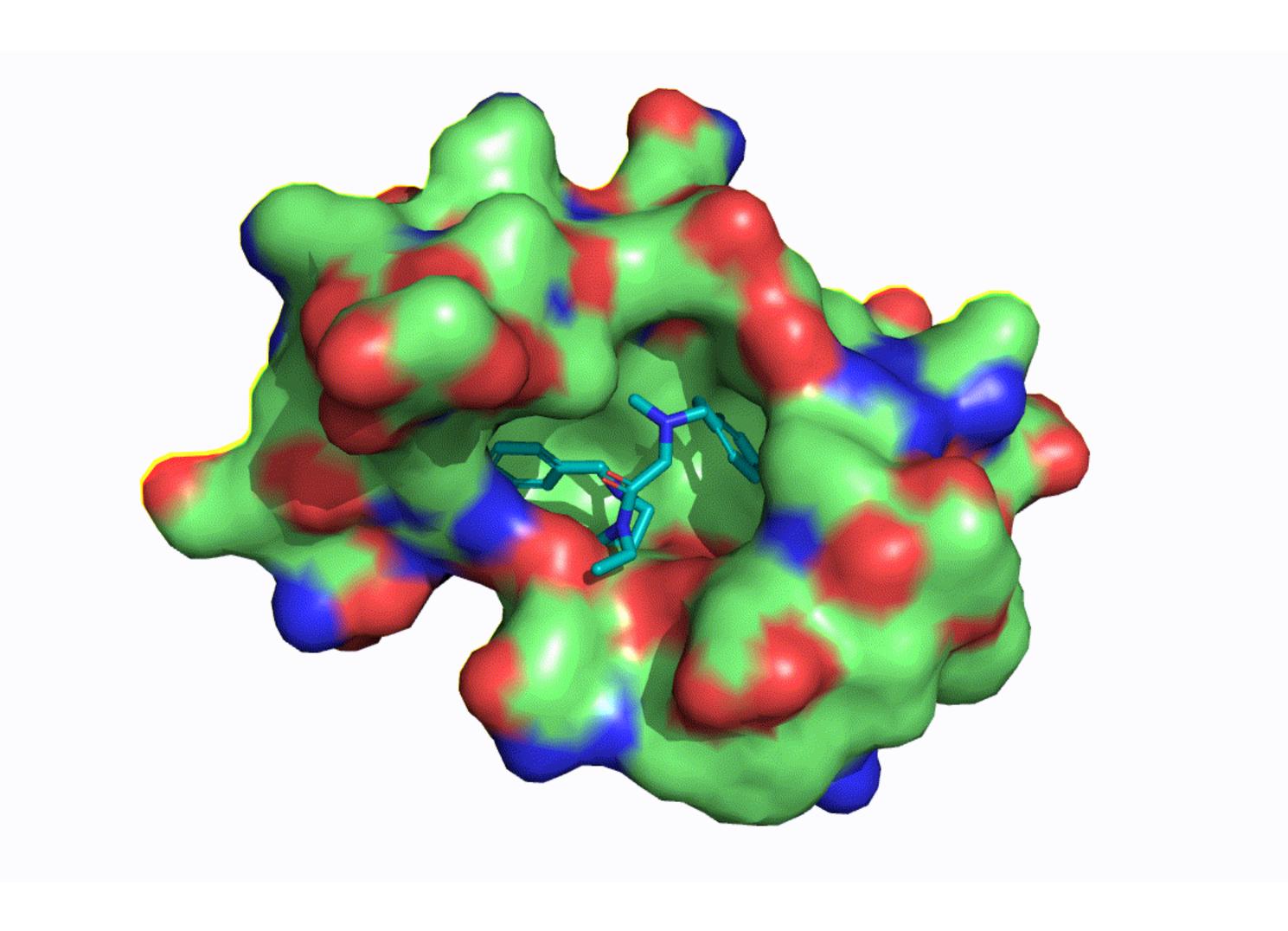












GVP all-atom

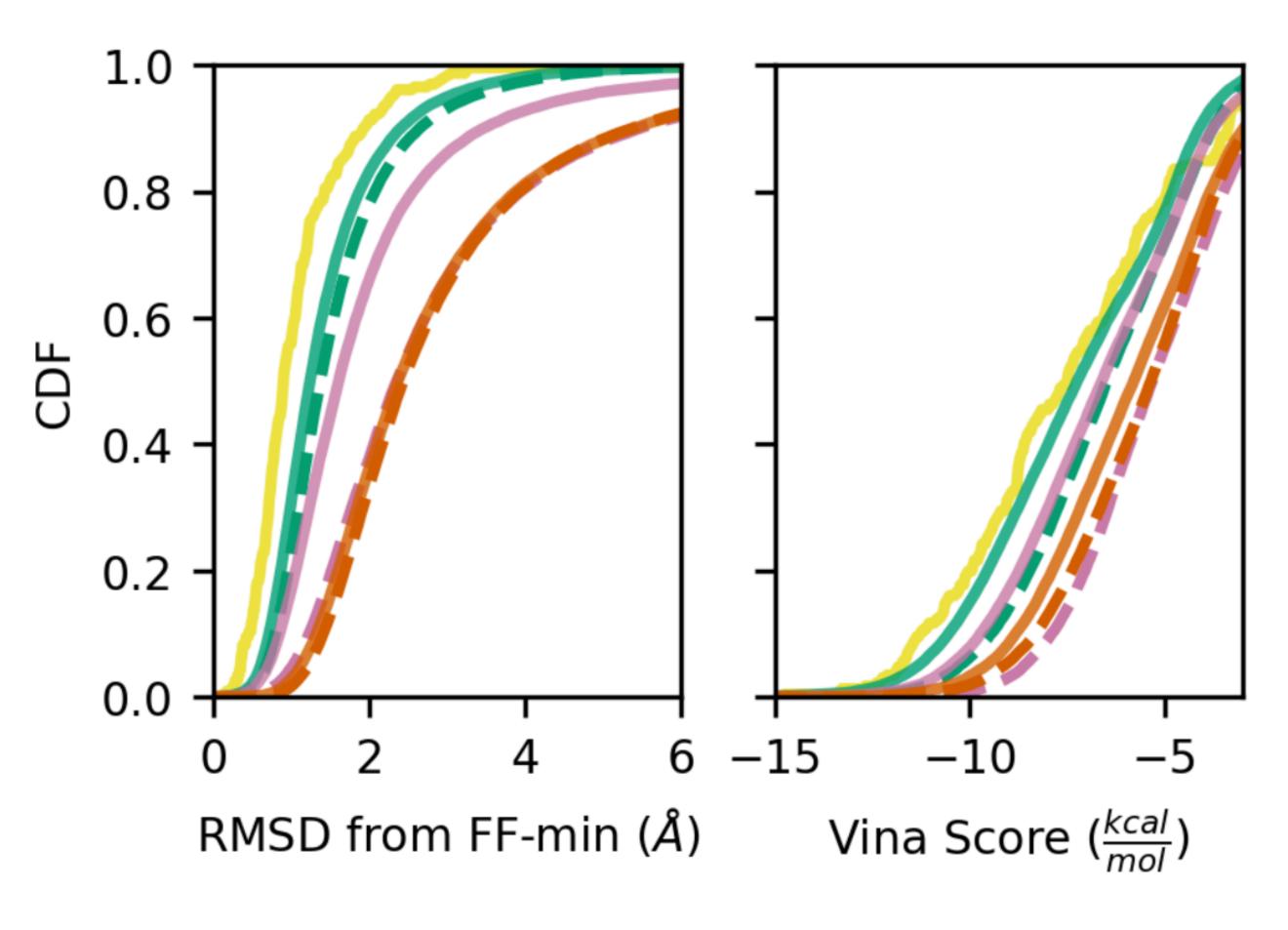
EGNN all-atom

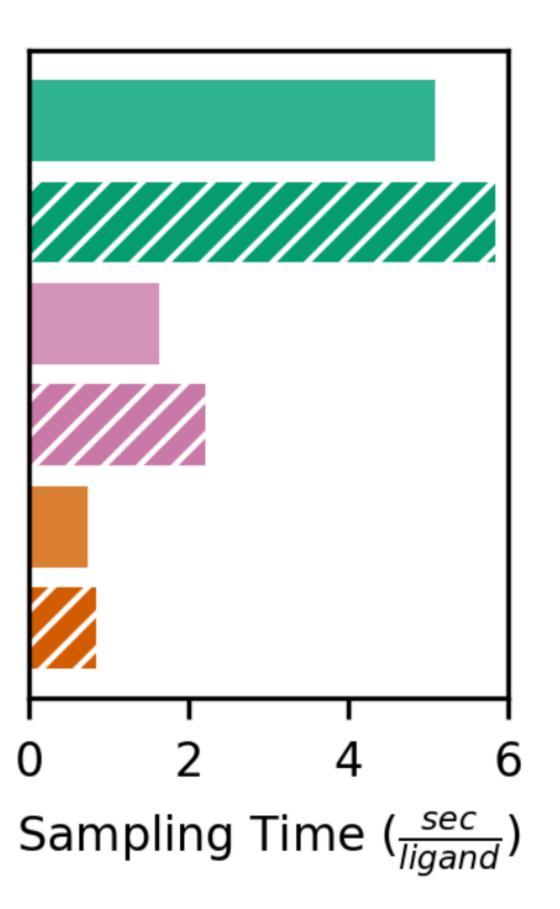
—— GVP keypoints

EGNN keypoints

--- GVP C_{α}

- EGNN C_{α}

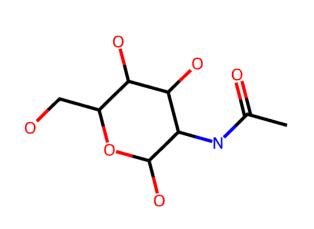




Reference Molecules

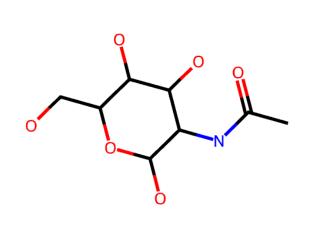
Generated Molecules

Reference Molecules

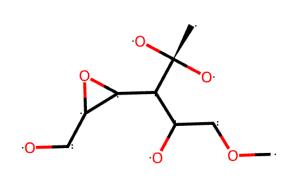


Generated Molecules

Reference Molecules



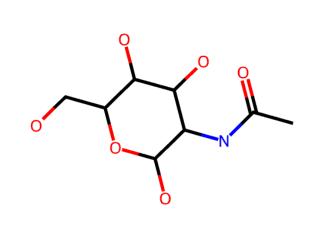
Generated Molecules



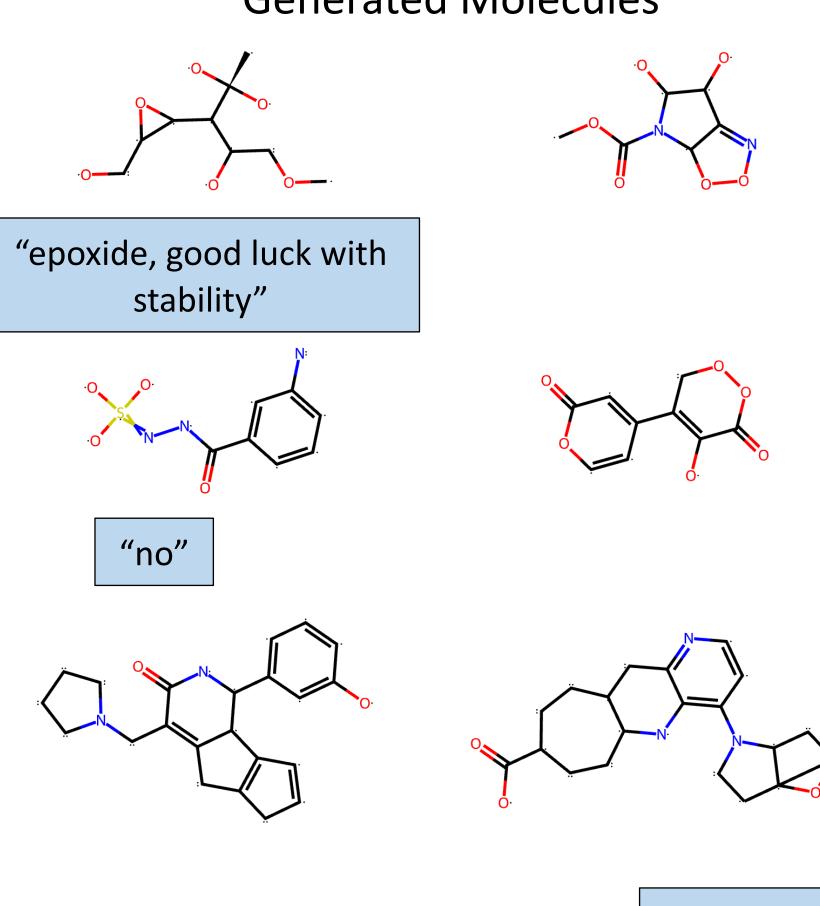
"epoxide, good luck with stability"

"certainly unstable"

Reference Molecules



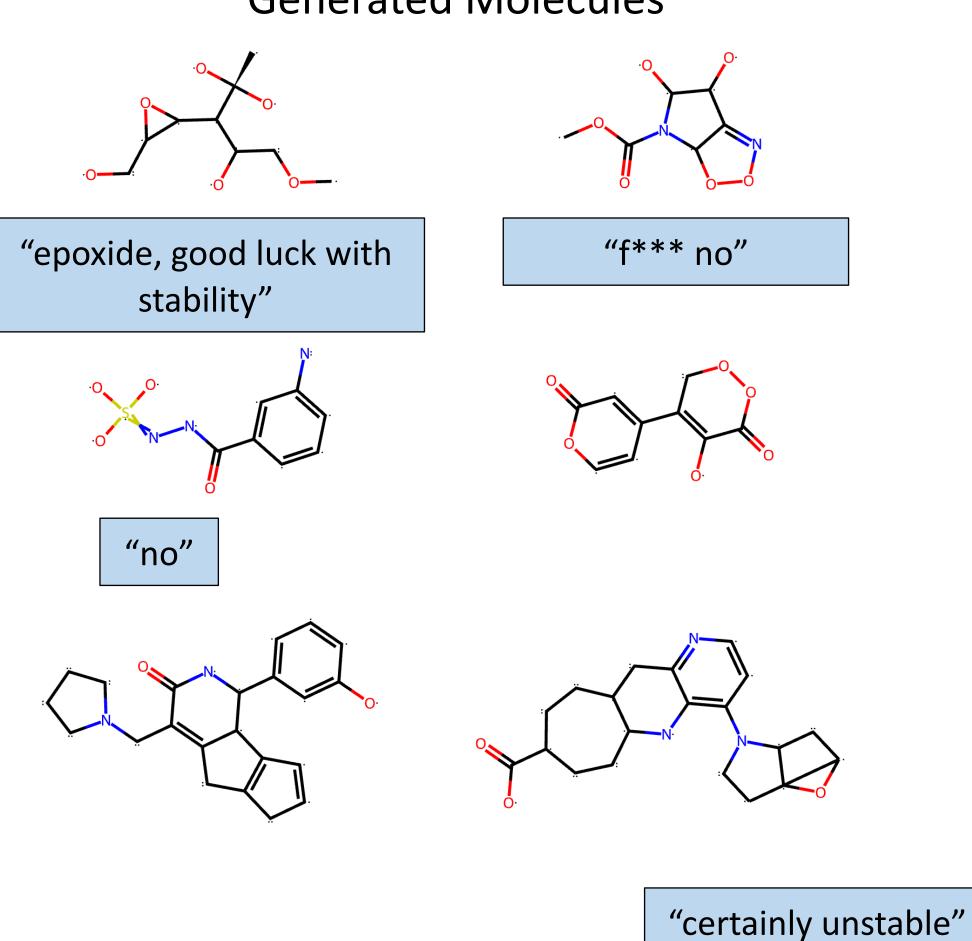
Generated Molecules



"certainly unstable"

Reference Molecules

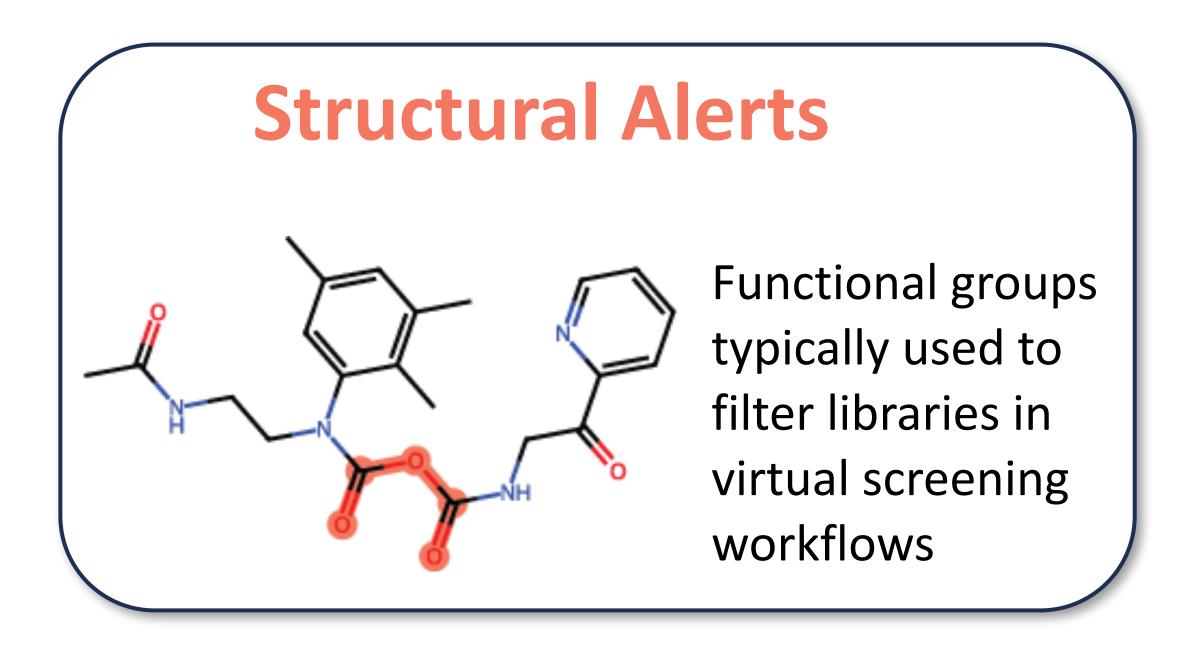
Generated Molecules

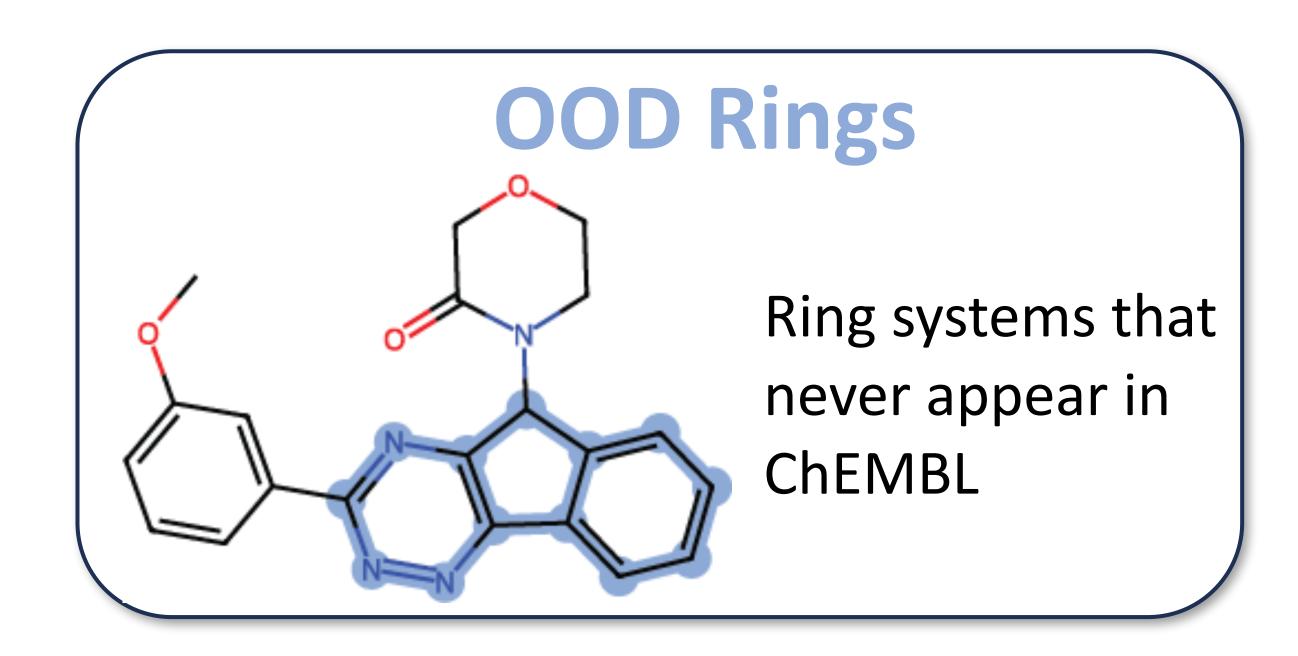


Practical Measures of Molecule Quality

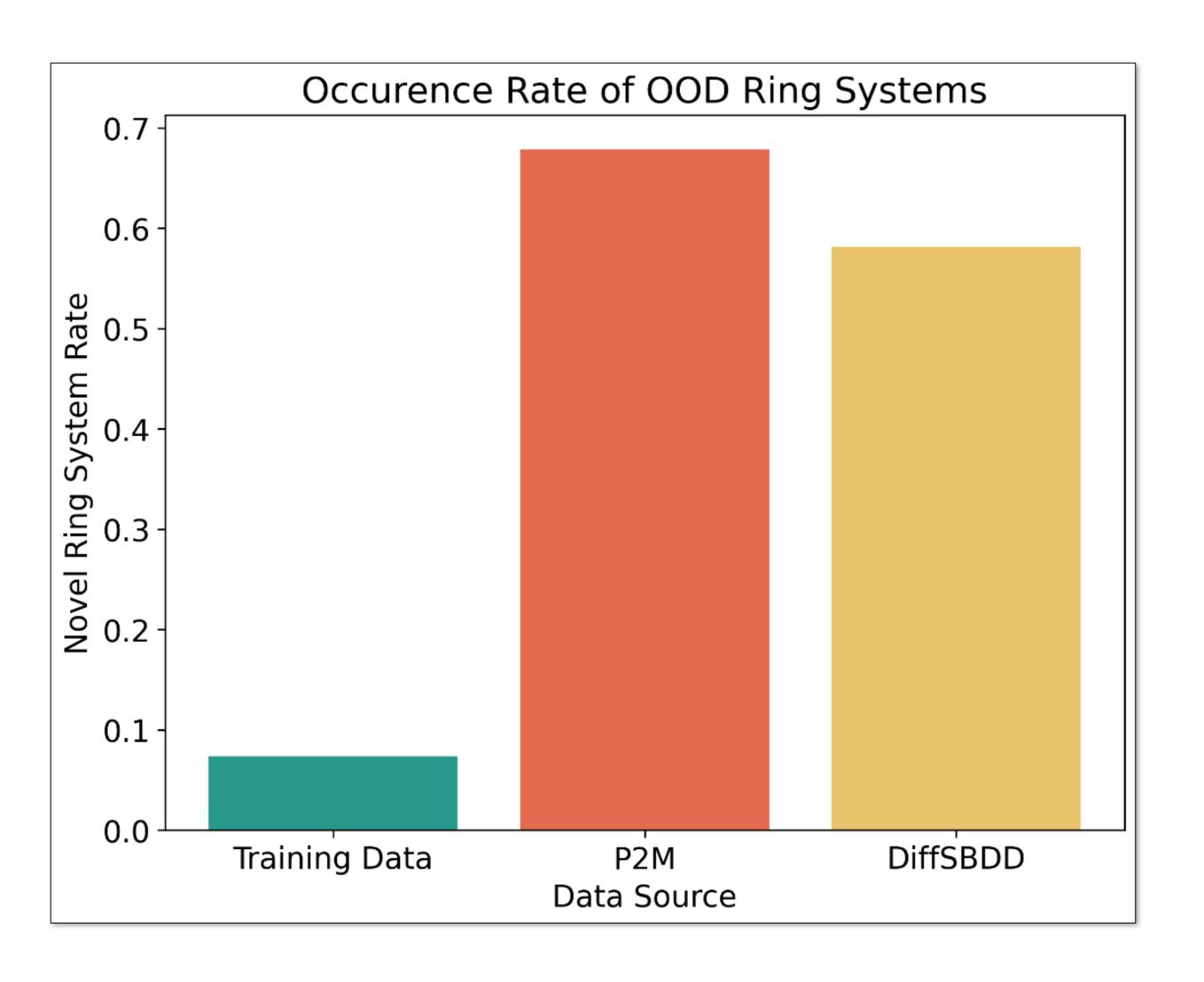
Existing literature primarily focuses on validity/valency; necessary but insufficient dimensions of molecule quality

We propose to evaluate molecule quality at the level of functional groups and ring systems

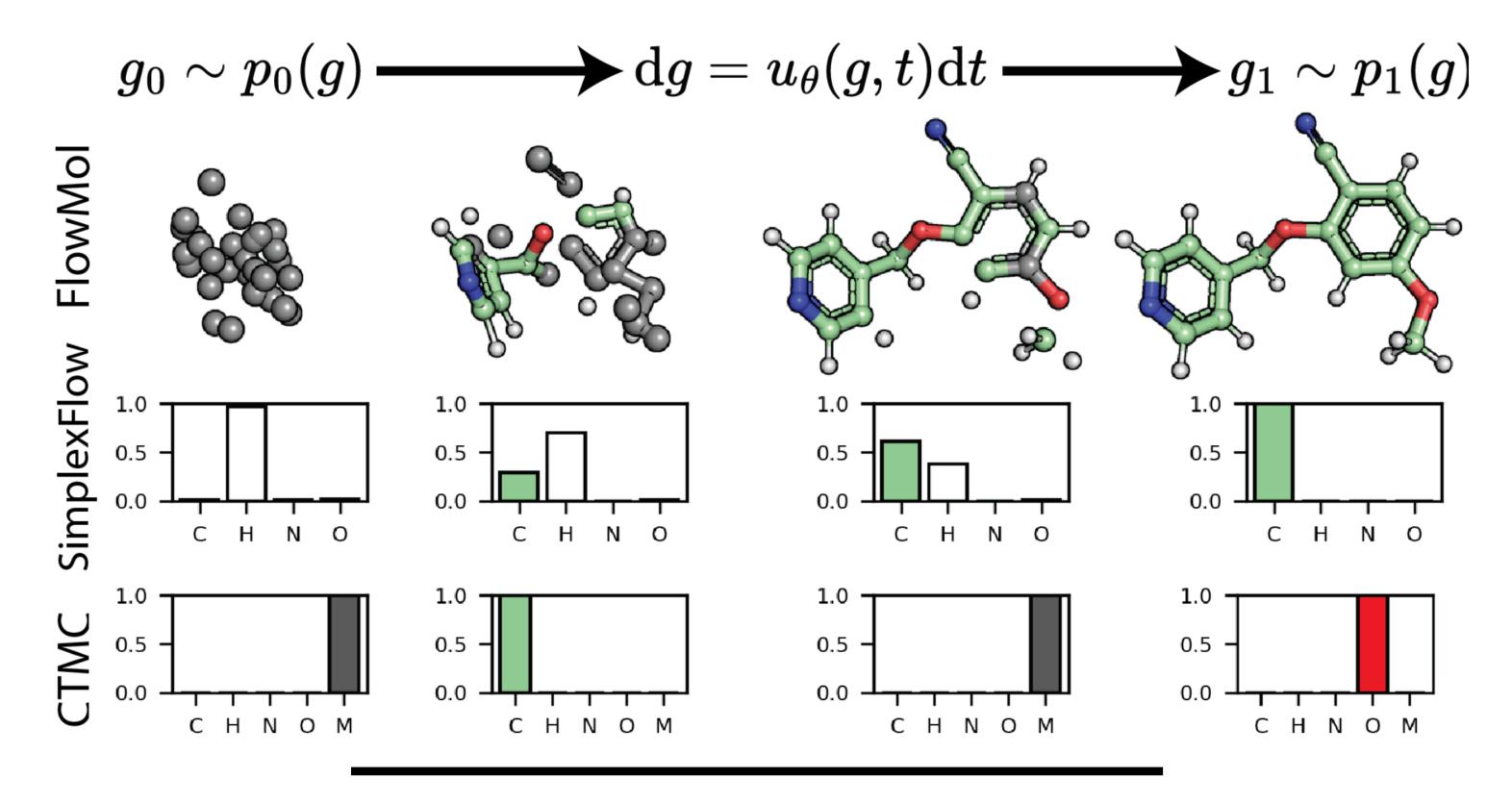




Practical Measures of Molecule Quality



Unconditional Generation with FlowMol



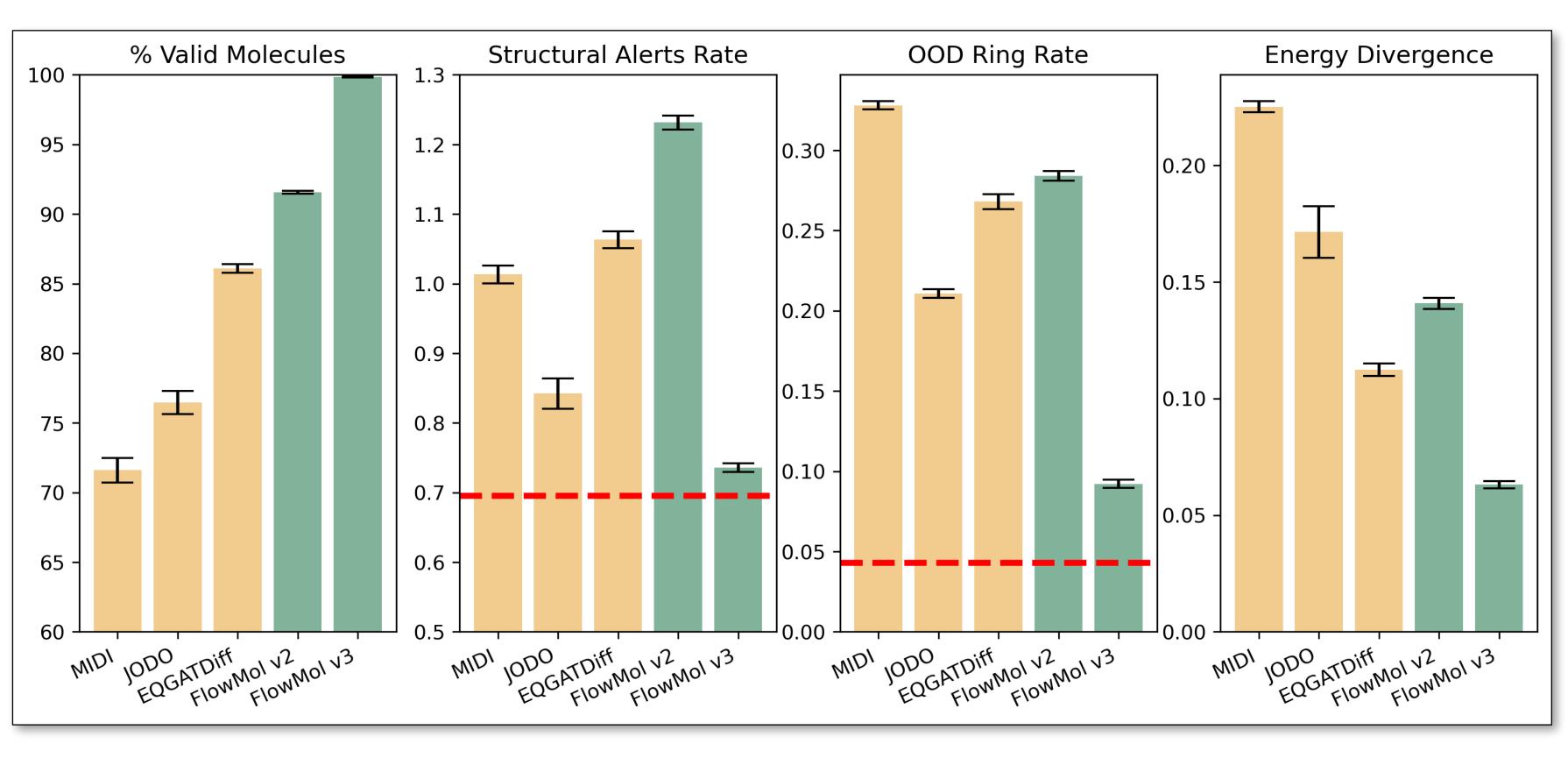
Exploring Discrete Flow Matching for 3D De Novo Molecule Generation

Ian Dunn
Dept. of Computational & Systems Biology
University of Pittsburgh
Pittsburgh, PA 15260
ian.dunn@pitt.edu

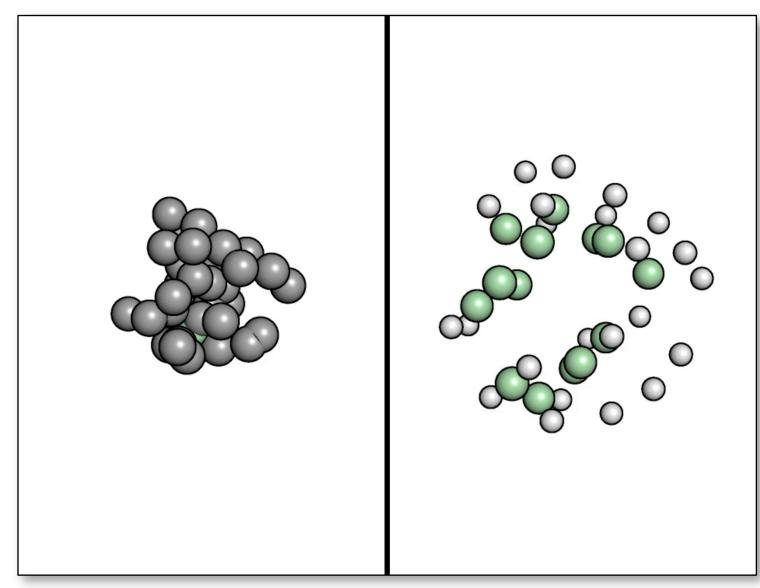
David Ryan Koes

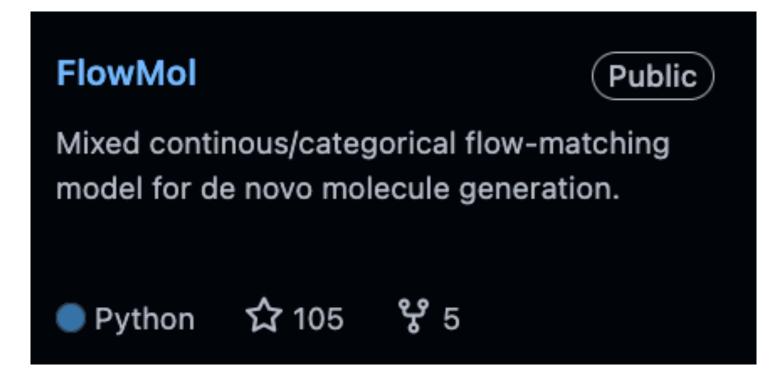
Dept. of Computational & Systems Biology
University of Pittsburgh
Pittsburgh, PA 15260
dkoes@pitt.edu

FIOWMOI V3

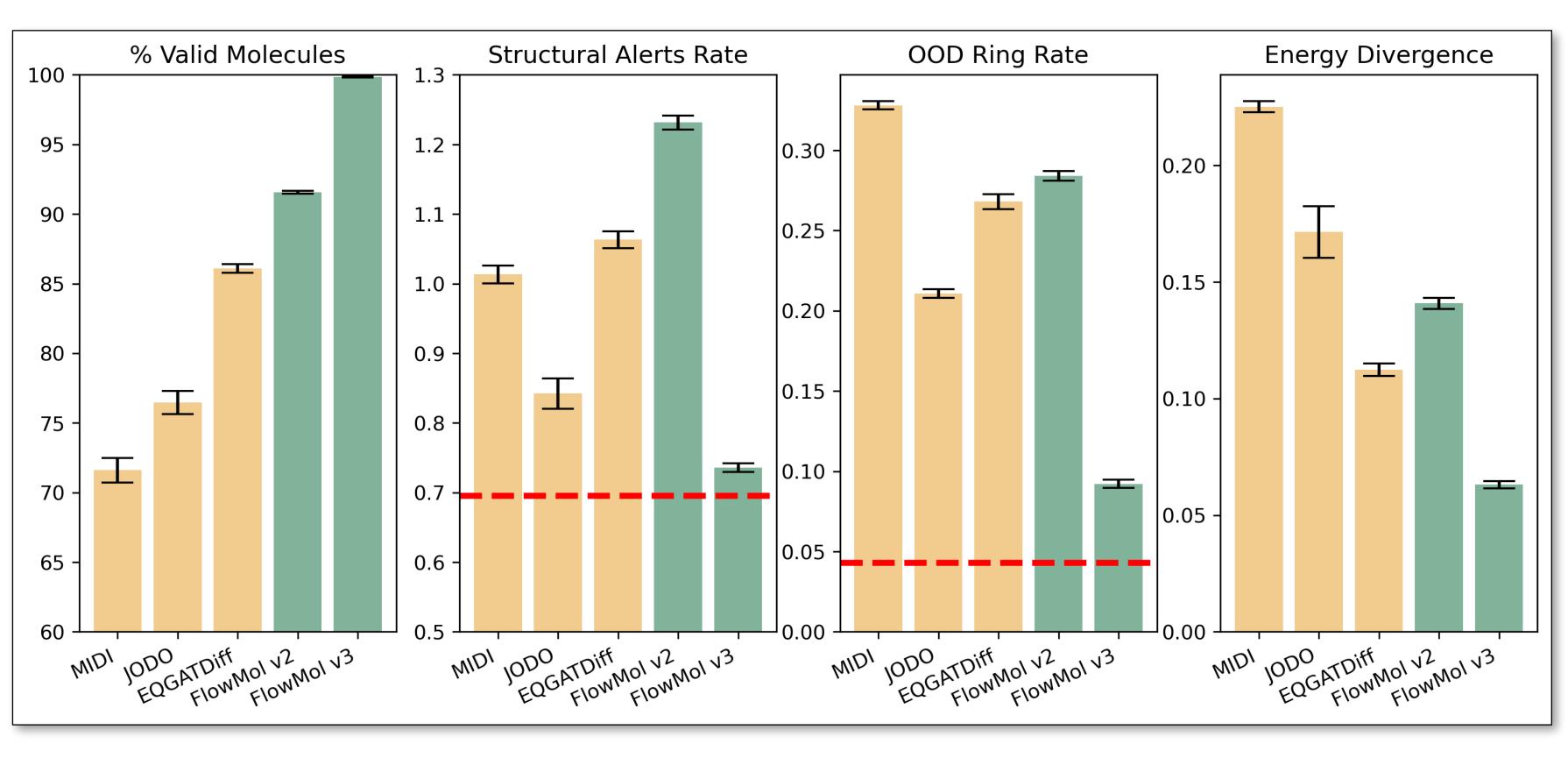


- State of the art validity
- Improves chemical plausibility and synthetic accessibility

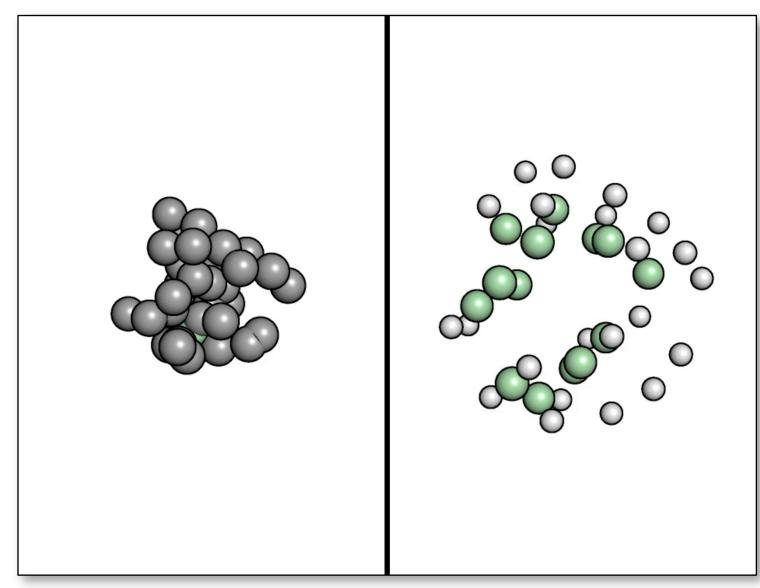


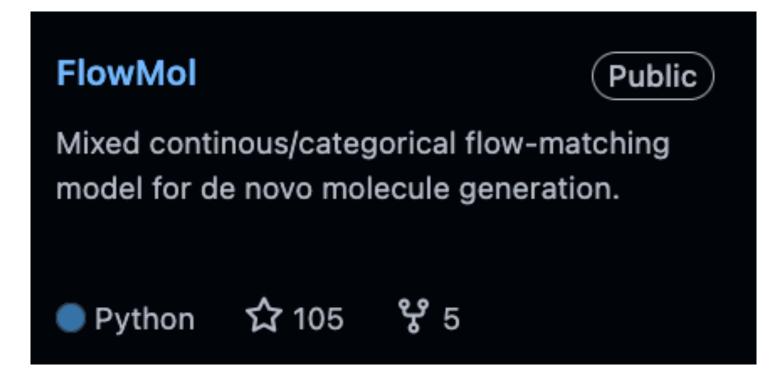


FIOWMOI V3



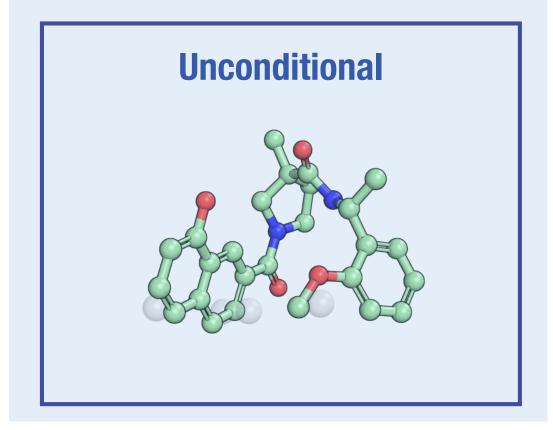
- State of the art validity
- Improves chemical plausibility and synthetic accessibility

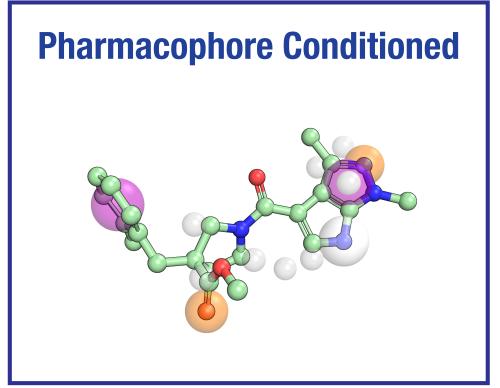


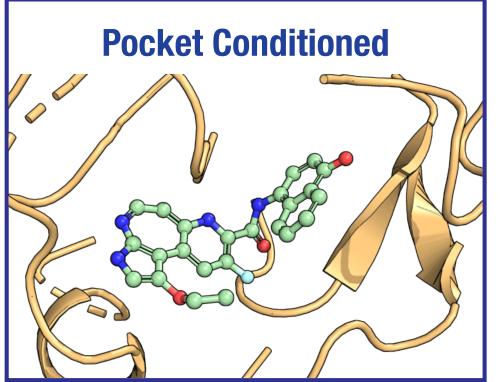


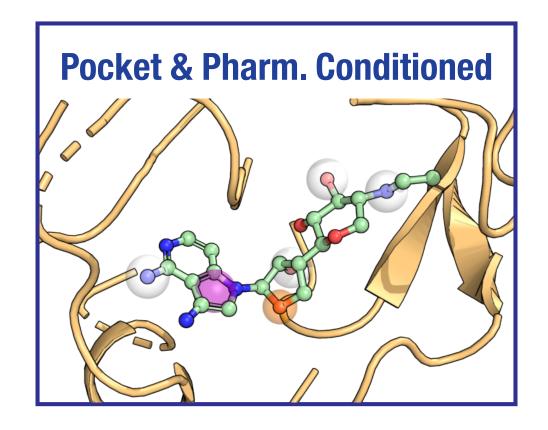
OMTRA

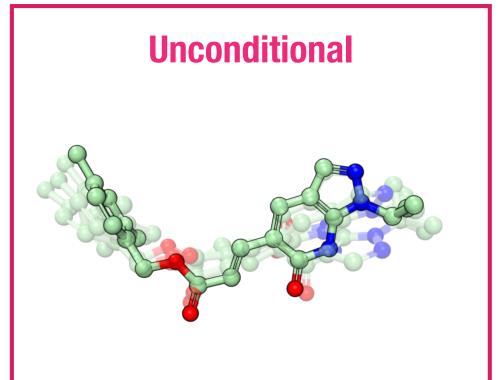
FlowMol3

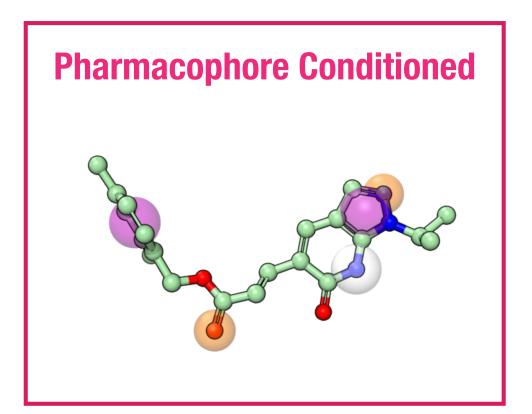


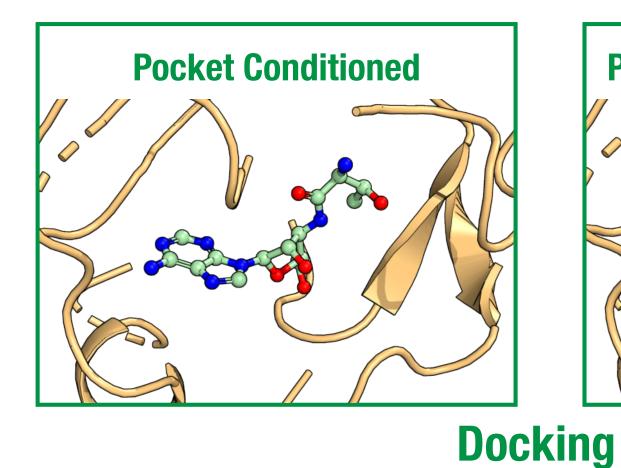


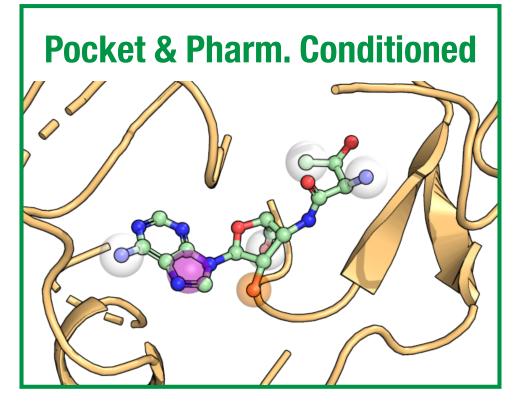












Conformer Generation

lan Dunn

Tyler Katz

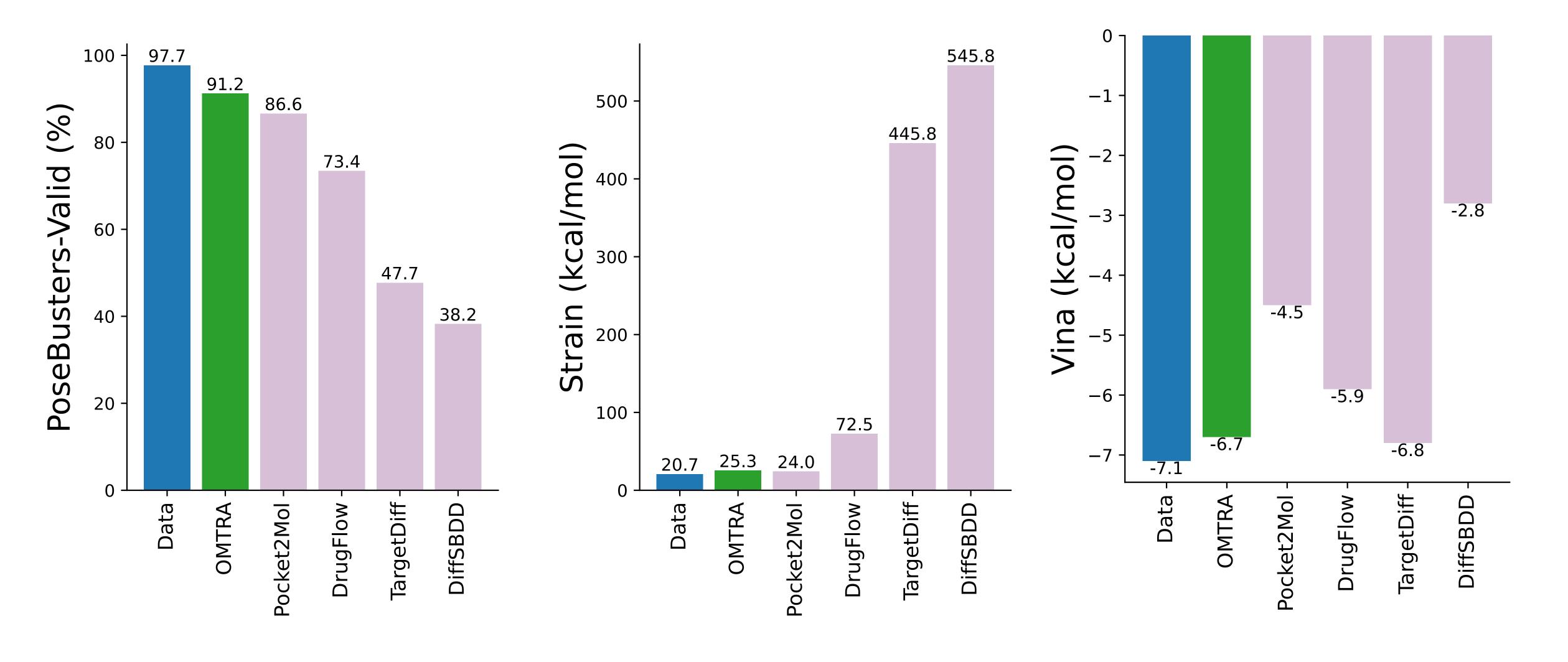
Ramith <u>Hettiarachchi</u>

OMTRA: De Novo Design

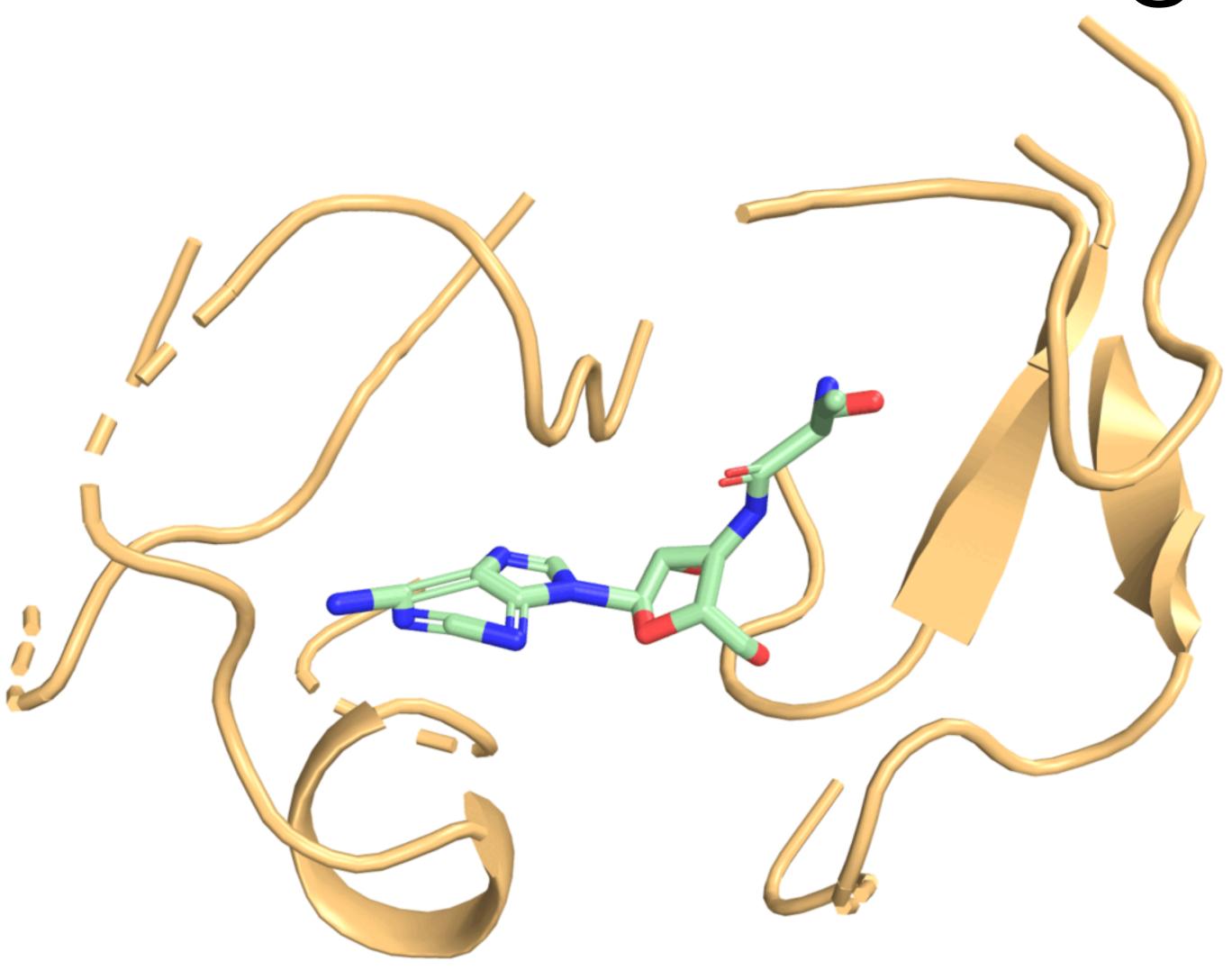
OMTRA: De Novo Design

OMTRA: De Novo Design

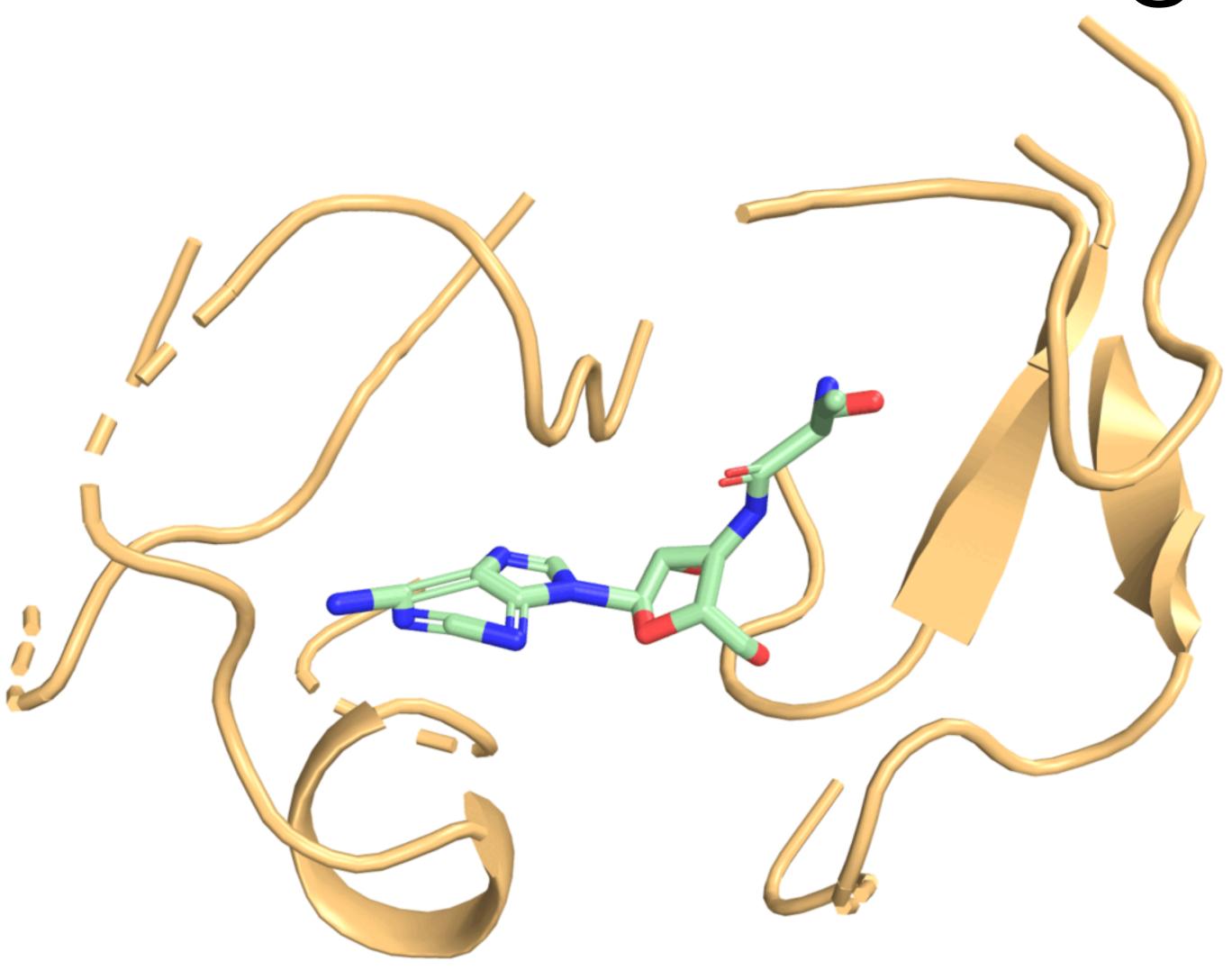
Evaluated on Luo et al CrossDocked test set.



OMTRA: Docking

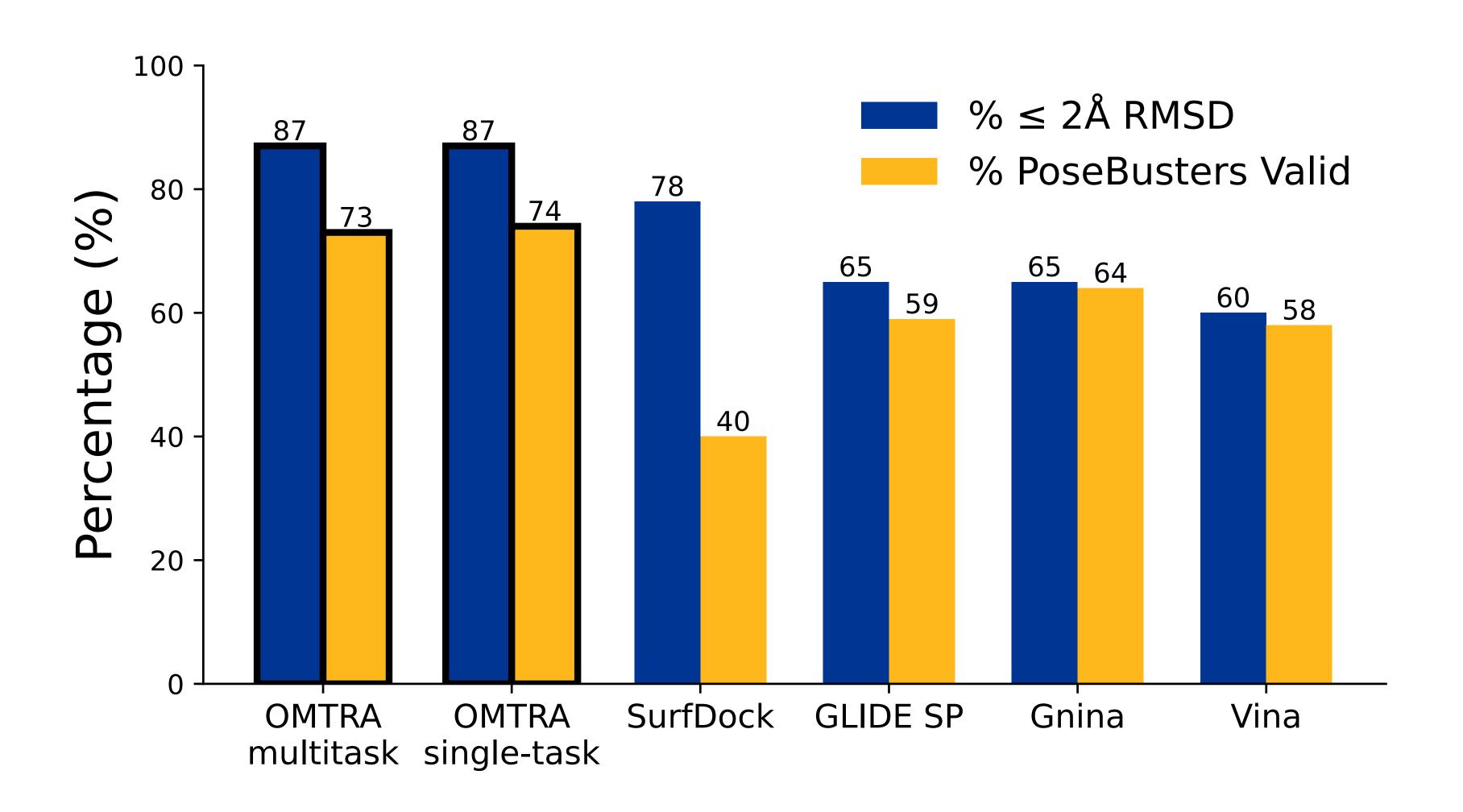


OMTRA: Docking



OMTRA: Docking

Evaluated on PoseBusters test set.

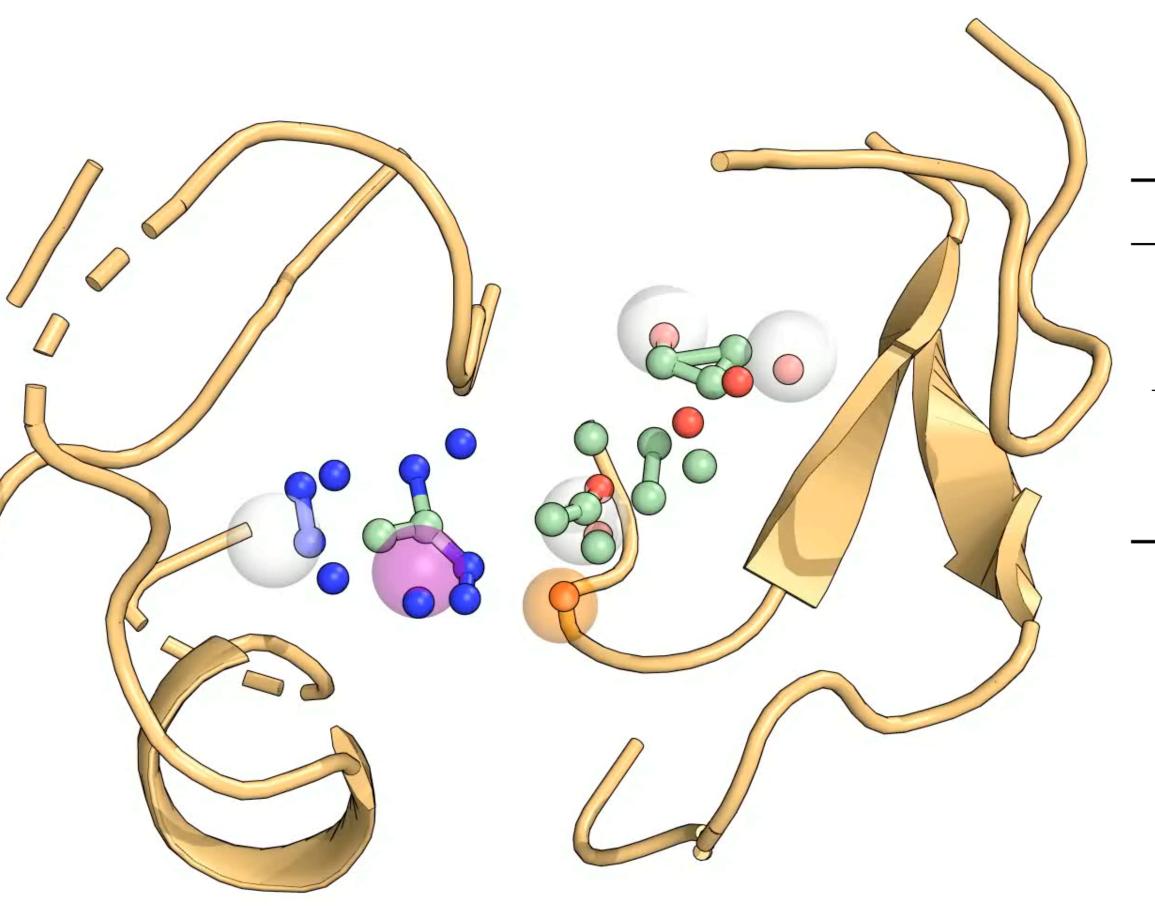


OMTRA: Transfer Learning?

Evaluated on PLINDER test set.

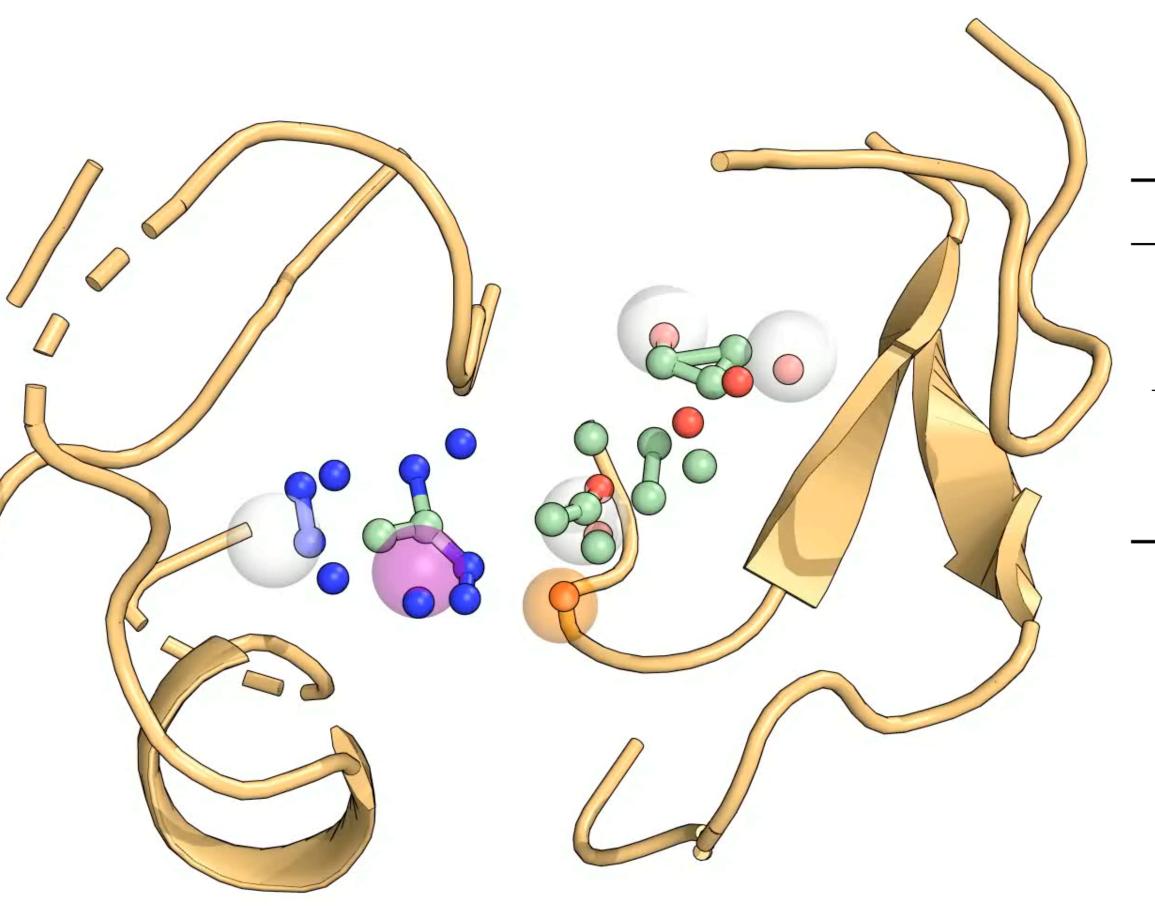
		De Novo Design		Docking		
Multitask	Pretrained	% Valid	%PB-Valid	strain	$\% \leq 2\text{Å}$	%PB-Valid
Data			94.0	39.2		
X	X	98.4	71.2	96.2	92.0	75.0
X		96.6	67.4	125.6	91.0	73.0
		97.6	69.7	69.6	95.0	75.0

OMTRA: Pharmacophore Conditioning



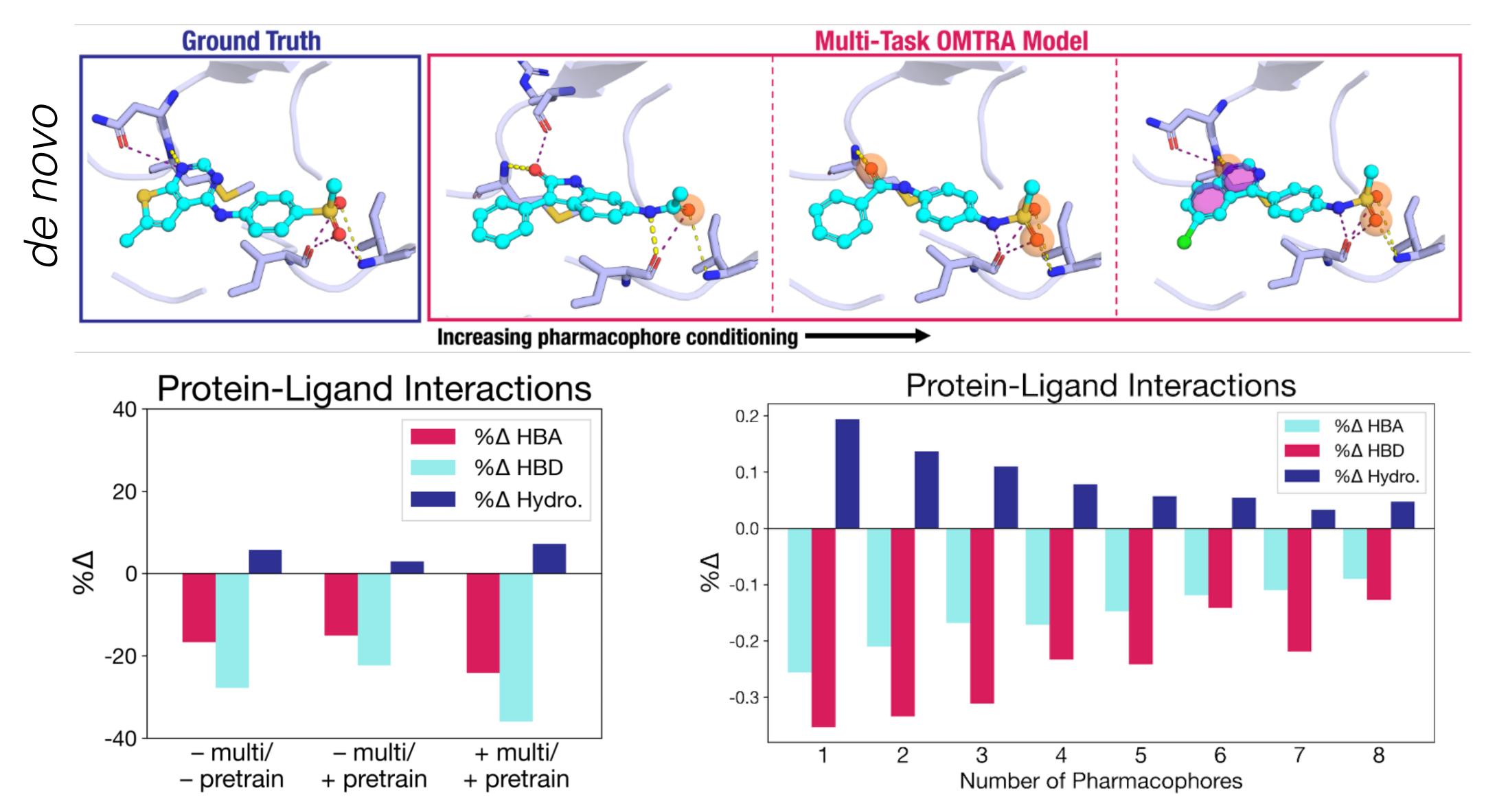
		Prot Conditioning	Prot + Pharm Conditioning
de novo design	%PB-Valid	67.5	66.2
	interaction recovery	51.0	67.4
	% Pharm Matches	-	96.9
docking	$% RMSD \le 2 Å$	93.0	99.0
· ·	%PB-Valid	73.0	81.0
	% Pharm Matches	-	99.5

OMTRA: Pharmacophore Conditioning



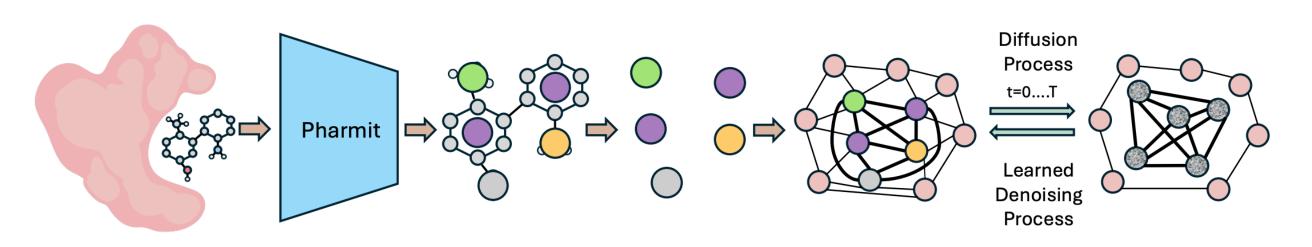
		Prot Conditioning	Prot + Pharm Conditioning
de novo design	%PB-Valid	67.5	66.2
	interaction recovery	51.0	67.4
	% Pharm Matches	-	96.9
docking	$% RMSD \le 2 Å$	93.0	99.0
· ·	%PB-Valid	73.0	81.0
	% Pharm Matches	-	99.5

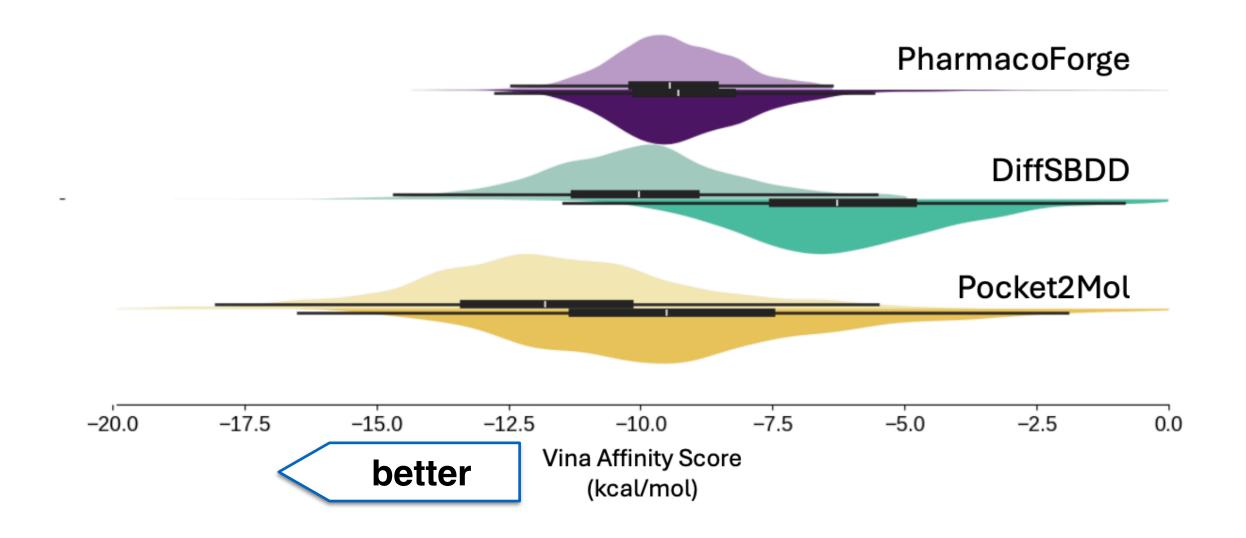
OMTRA: Pharmacophore Conditioning

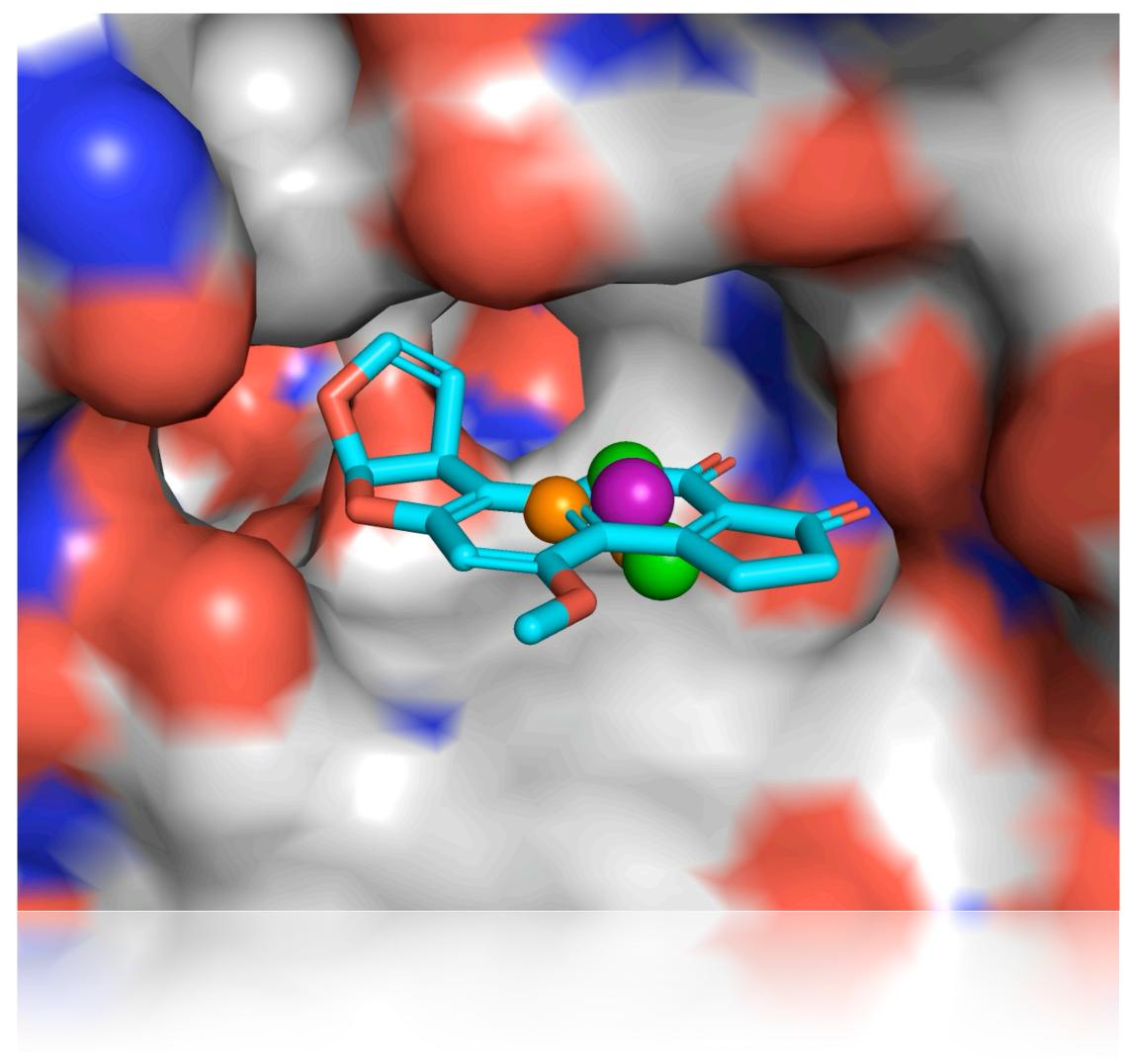


Generating Descriptions of Molecules

PharmacoForge



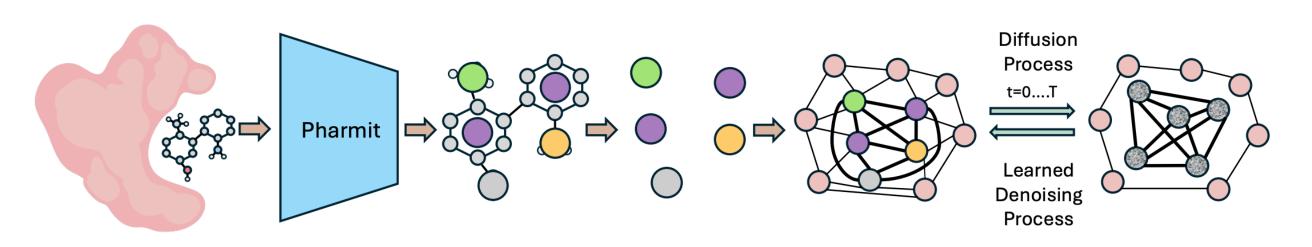


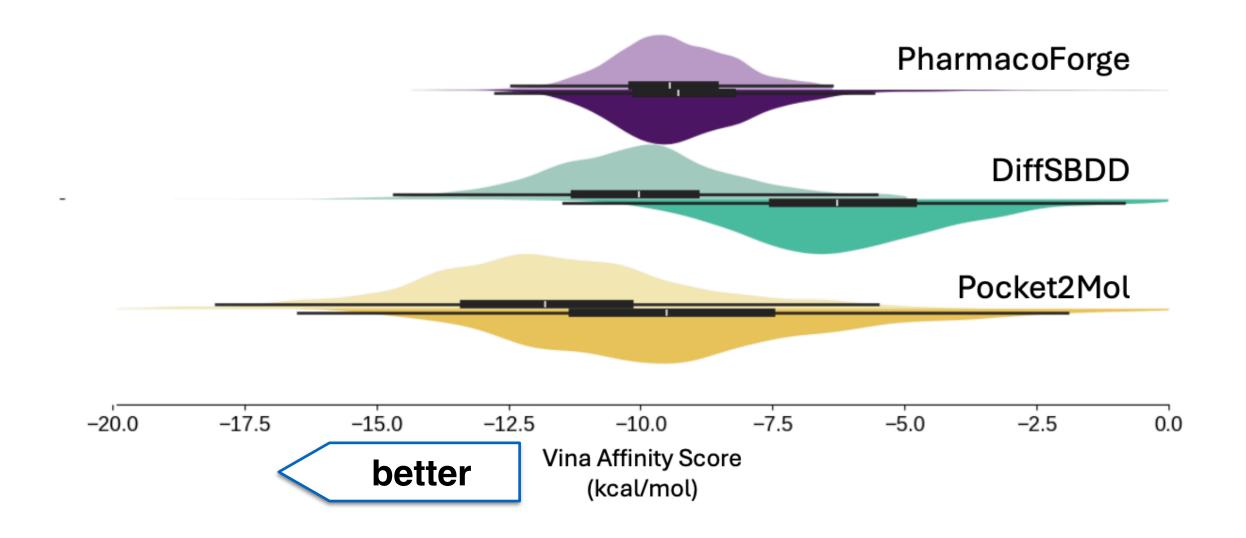


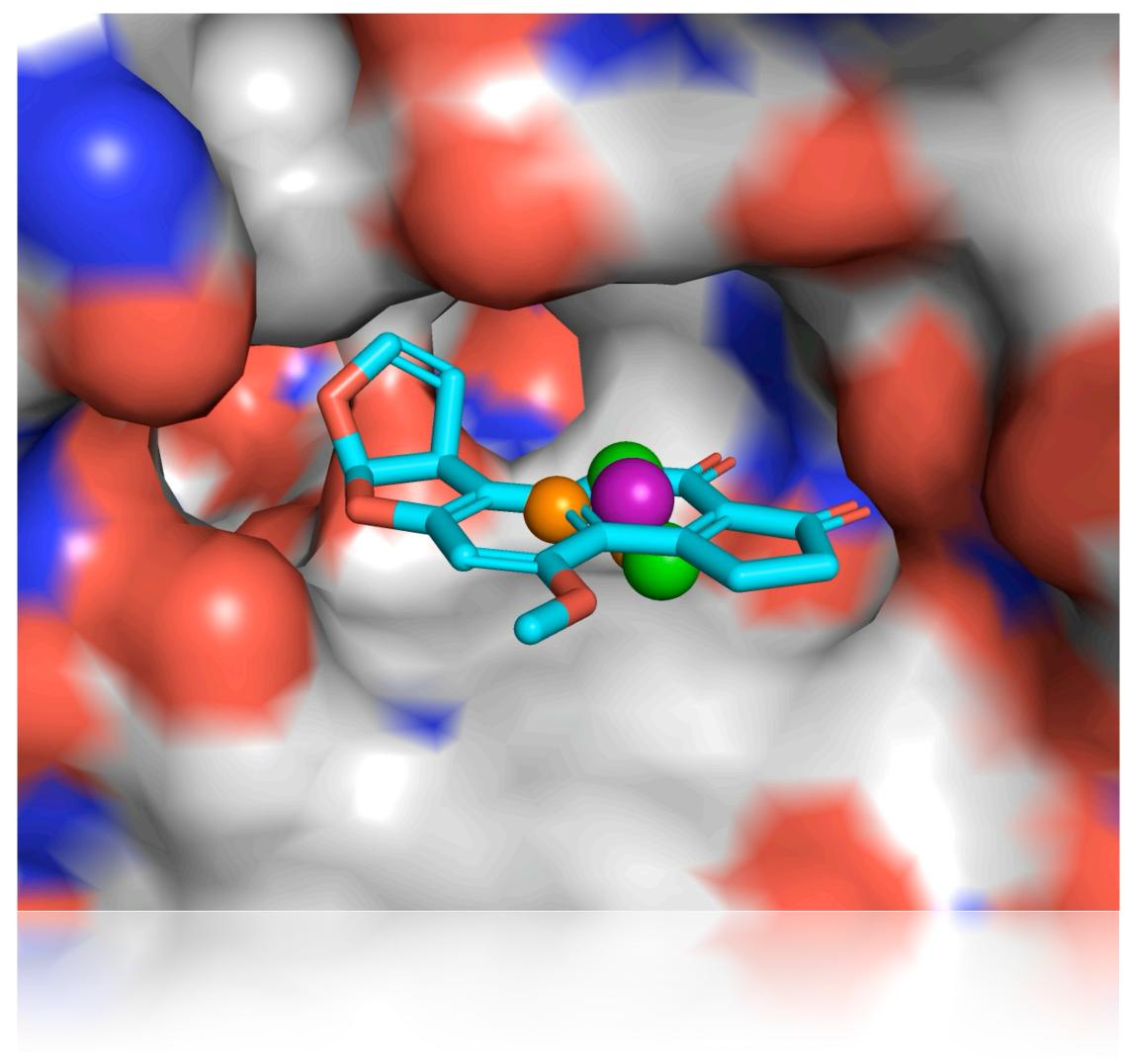
PharmacoForge: pharmacophore generation with diffusion models

Emma L. Flynn^{1,2}, Riya Shah ¹, Ian Dunn ^{1,2}, Rishal Aggarwal ^{1,2} and David Ryan Koes ¹*

PharmacoForge







PharmacoForge: pharmacophore generation with diffusion models

Emma L. Flynn^{1,2}, Riya Shah ¹, Ian Dunn ^{1,2}, Rishal Aggarwal ^{1,2} and David Ryan Koes ¹*

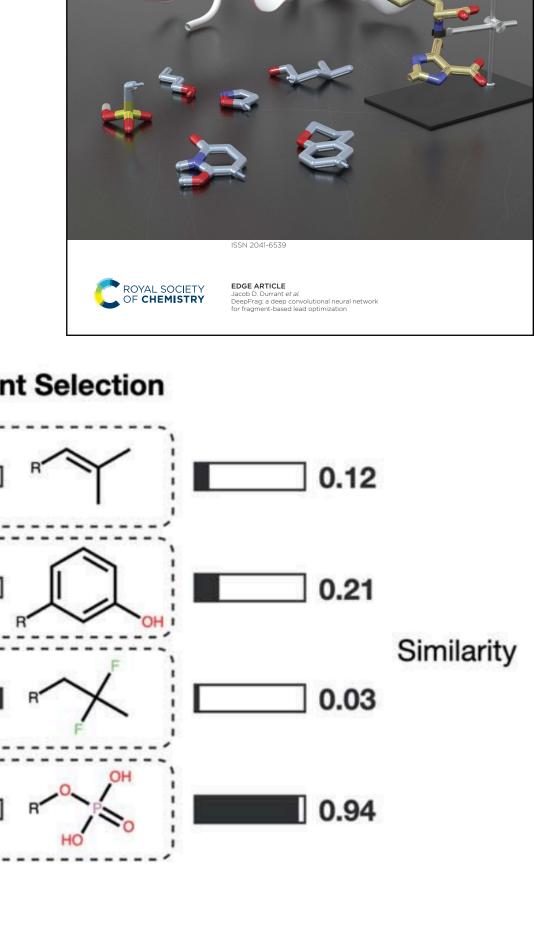
Chemical

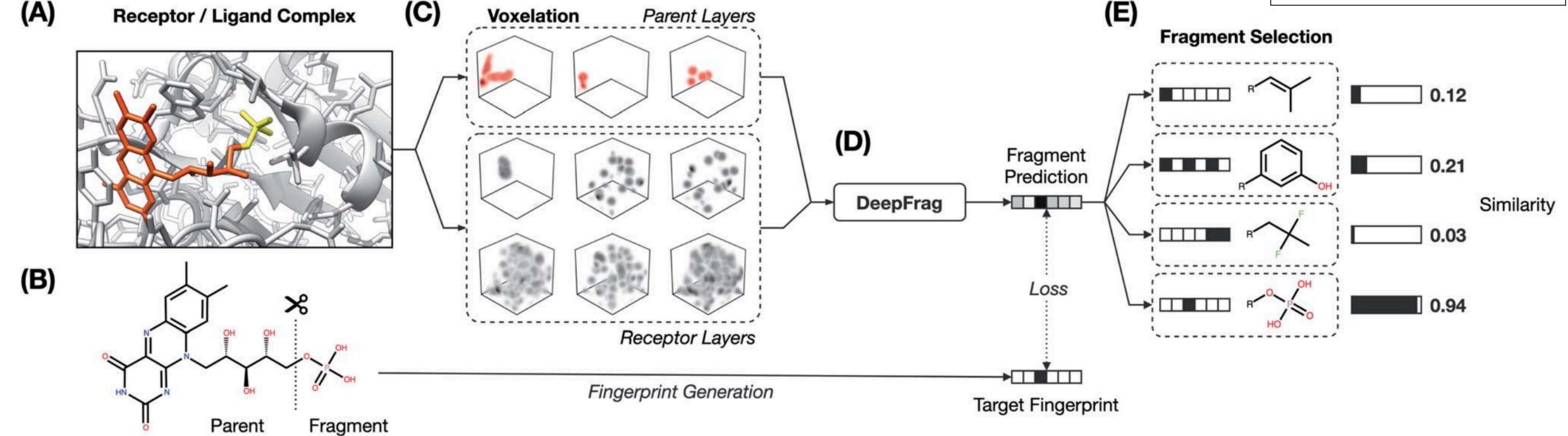
Science

DeepFrag: a deep convolutional neural network for fragment-based lead optimization†

Harrison Green, Paralle David R. Koes and Jacob D. Durrant **

https://durrantlab.pitt.edu/deepfrag/

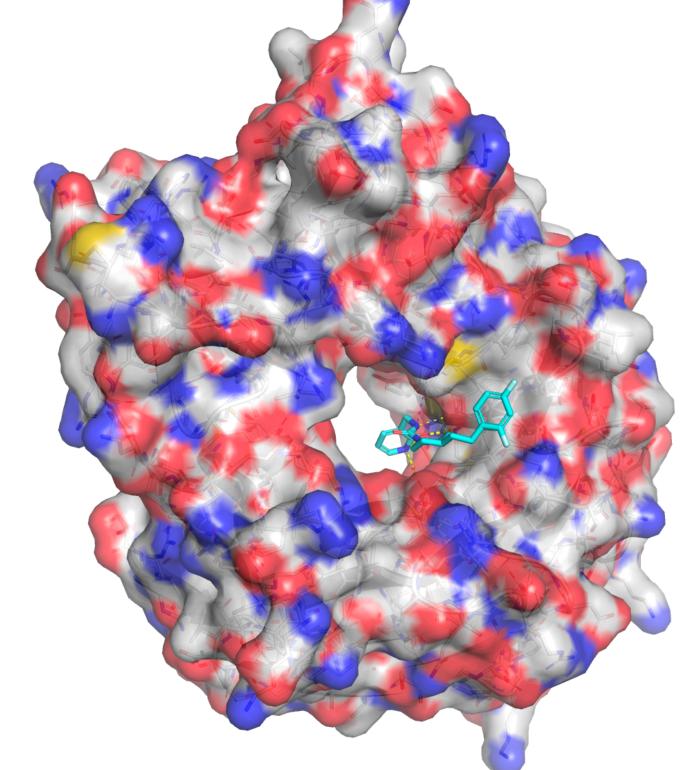


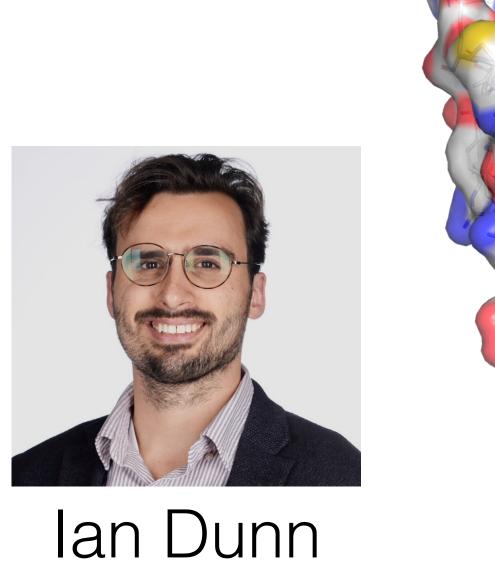


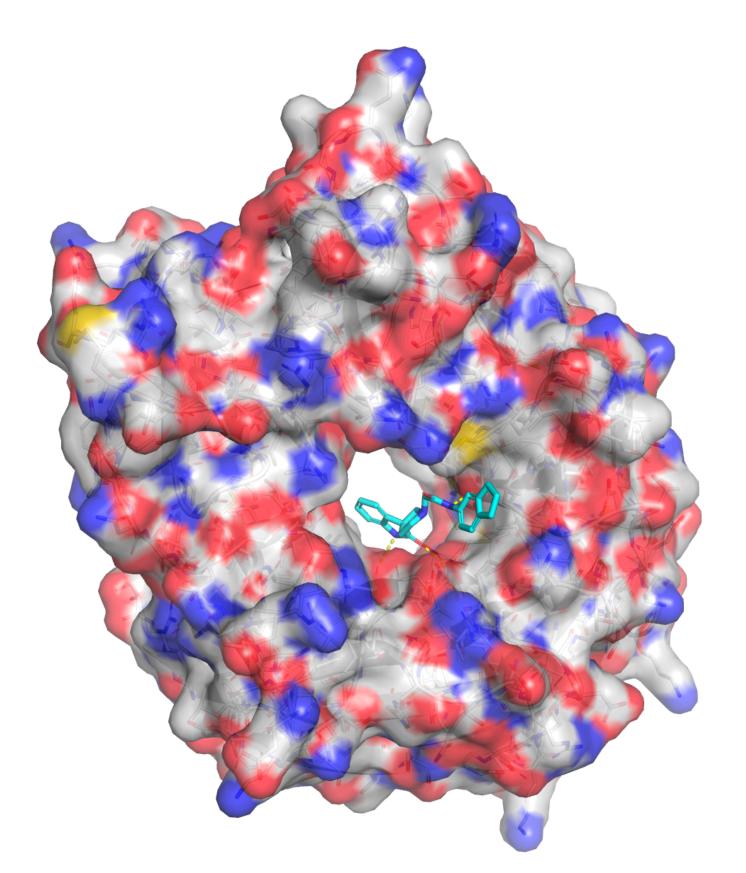
Prospective Evaluation

CRITICAL ASSESSMENT OF COMPUTATIONAL HIT-FINDING EXPERIMENTS

CACHE Challenge #1

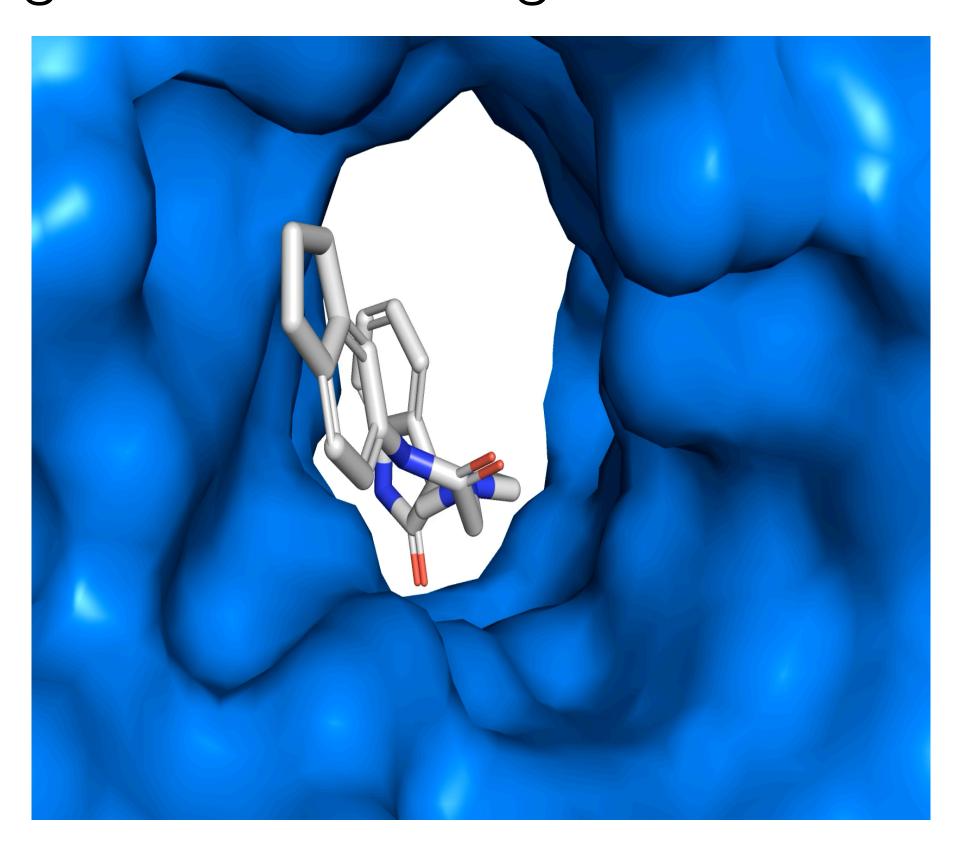




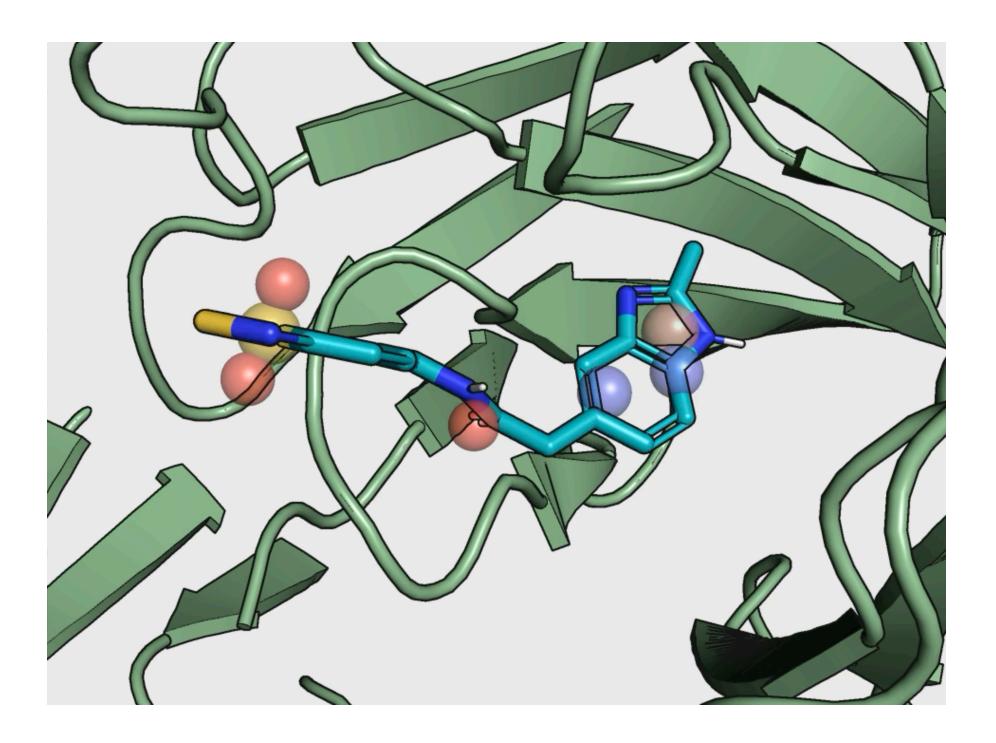


A Tale of Two Methods

Large-Scale Docking with GNINA

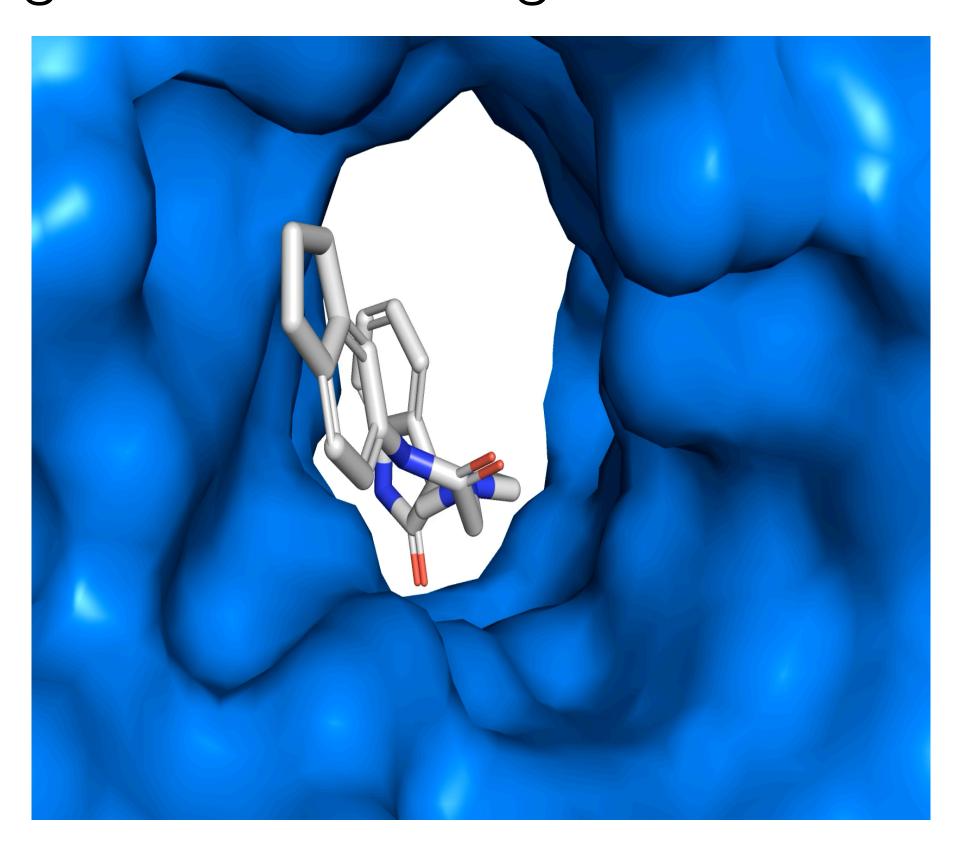


Pharmacophore Screening with Pharmit

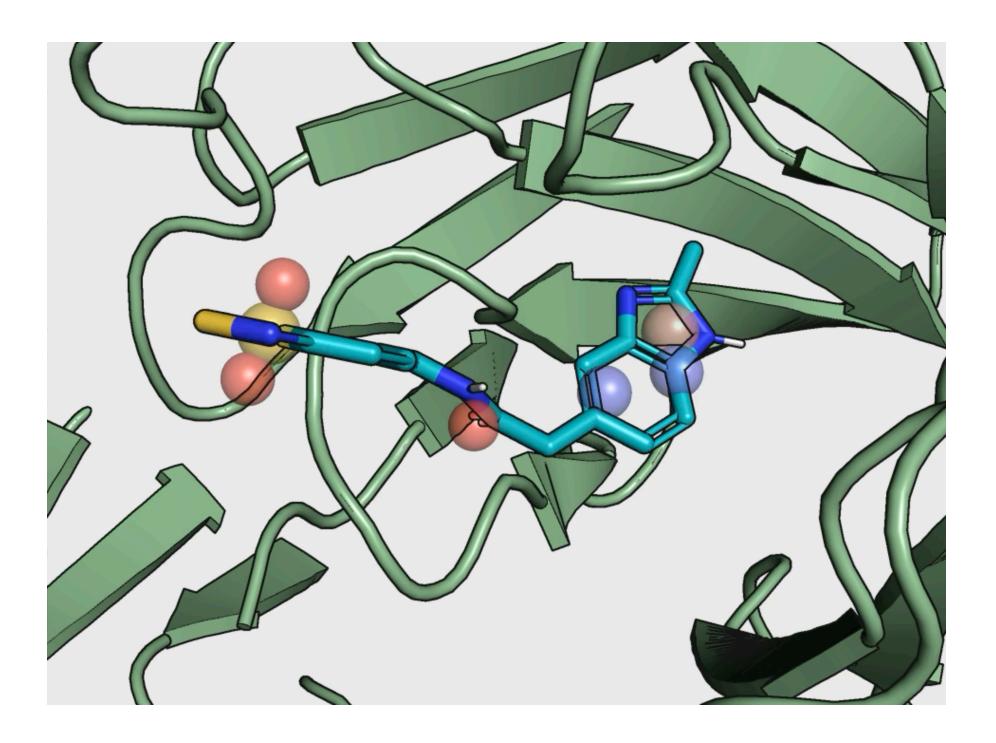


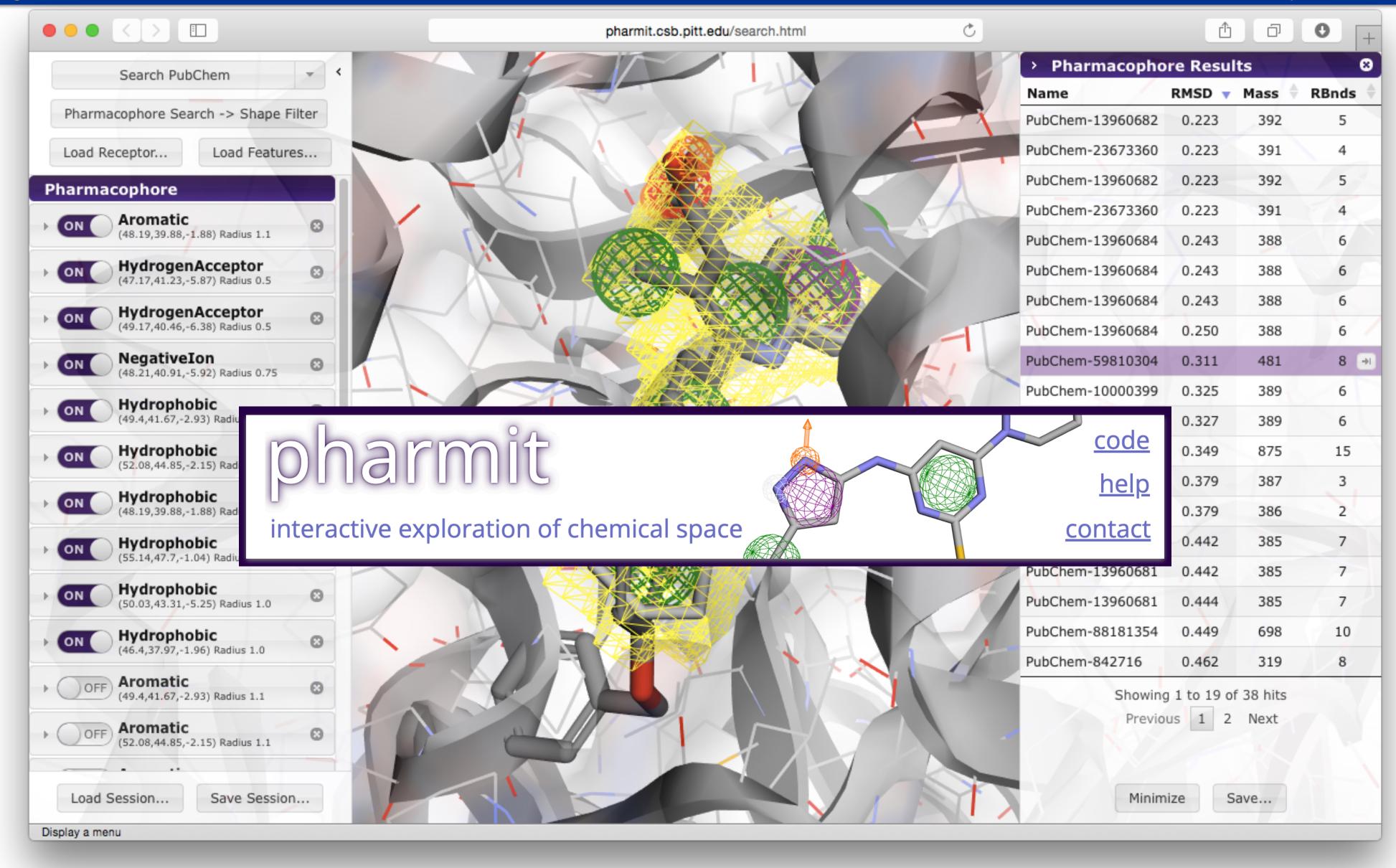
A Tale of Two Methods

Large-Scale Docking with GNINA



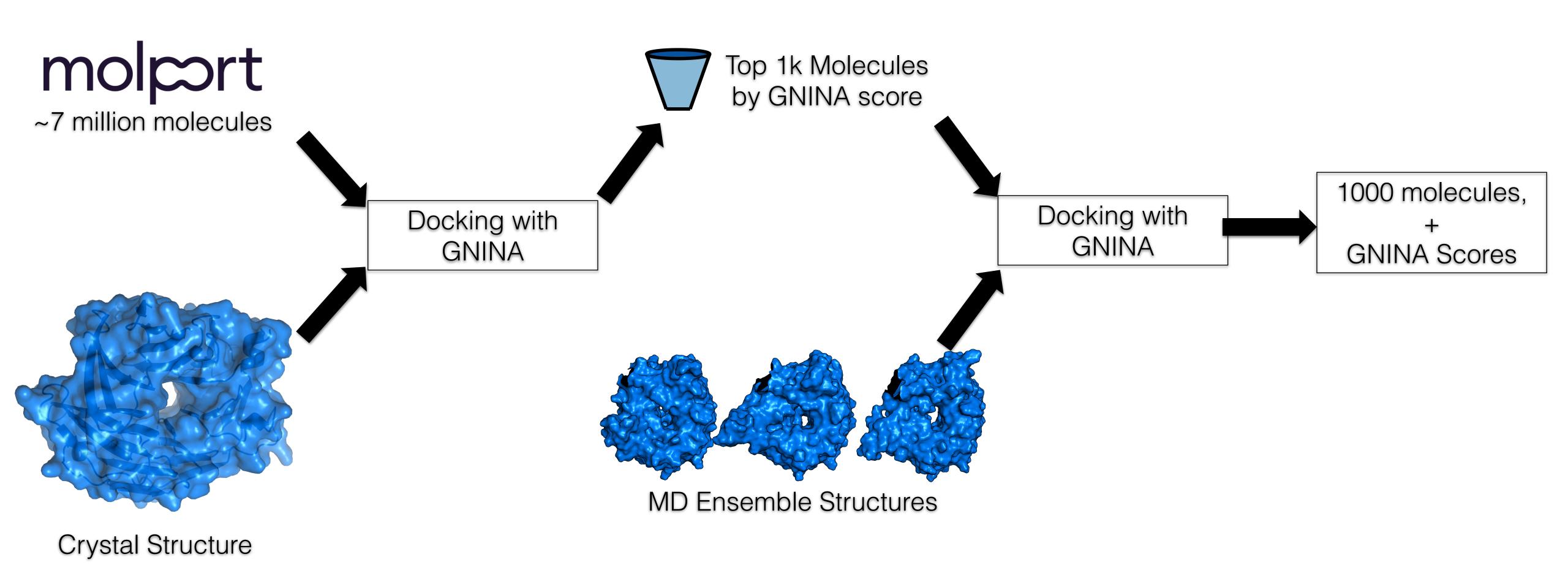
Pharmacophore Screening with Pharmit





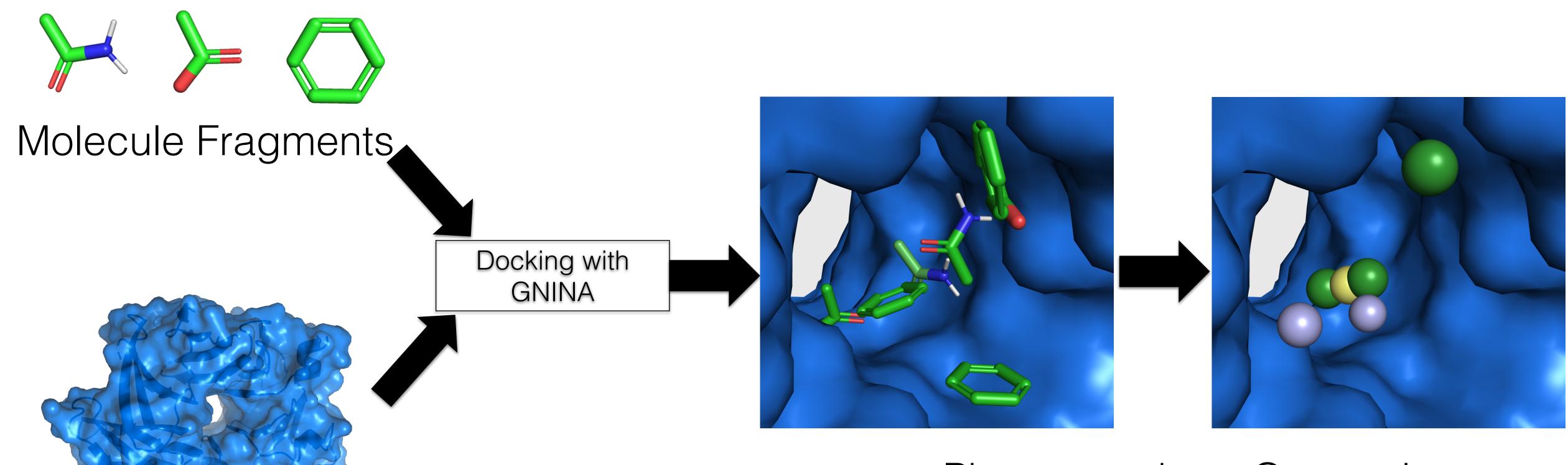
http://pharmit.csb.pitt.edu/

High-throughput Docking Pipeline



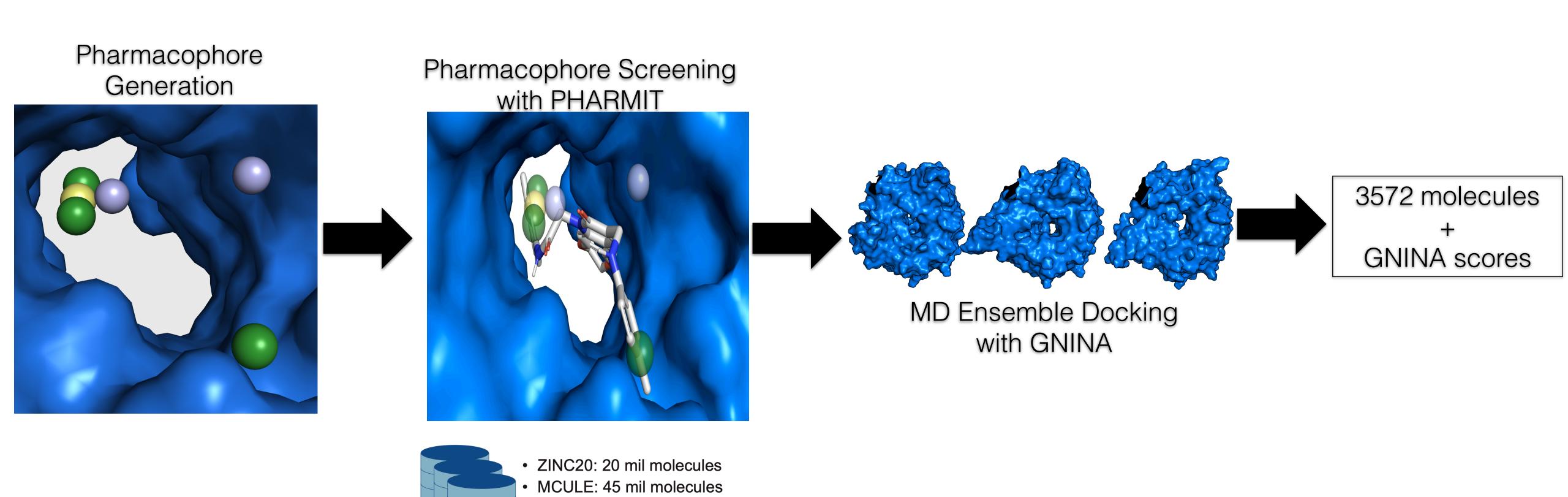
Crystal Structure

Pharmacophore Generation via Fragment Docking



Pharmacophore Generation

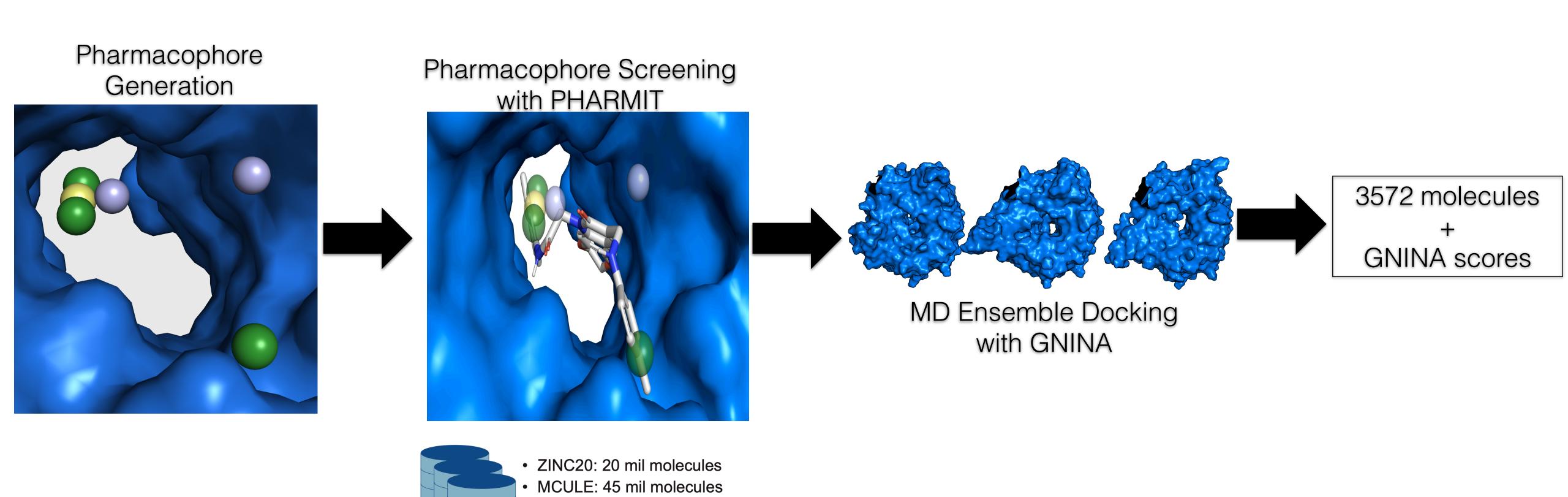
Pharmacophore Pipeline



MCULE-ULTIMATE: 126 mil molecules

Molecule Libraries

Pharmacophore Pipeline

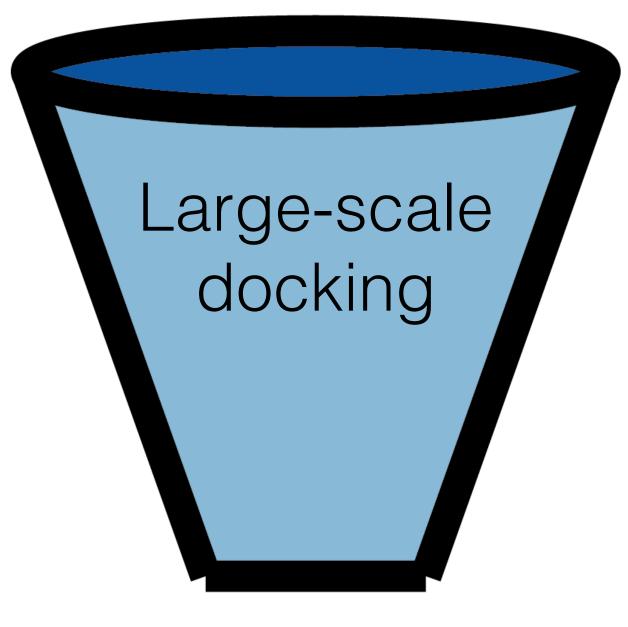


MCULE-ULTIMATE: 126 mil molecules

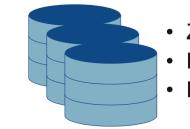
Molecule Libraries

Round 1 Submission

molport

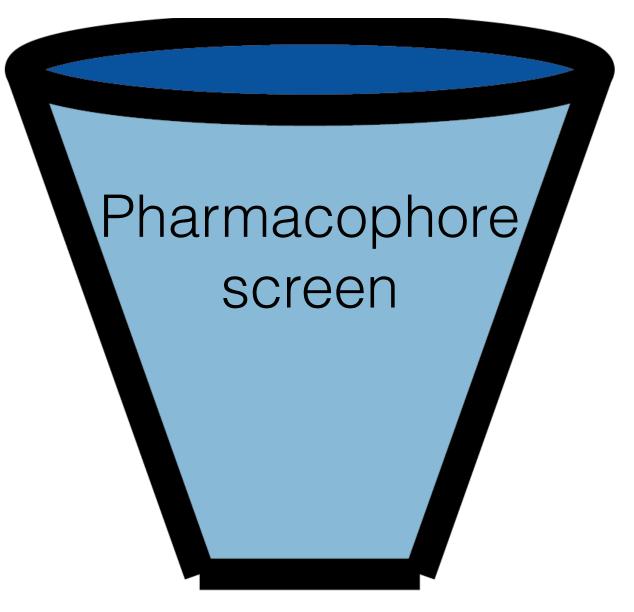


2 screening methods 2 scoring methods



- ZINC20: 20 mil molecules
- MCULE: 45 mil molecules
- MCULE-ULTIMATE: 126 mil molecules

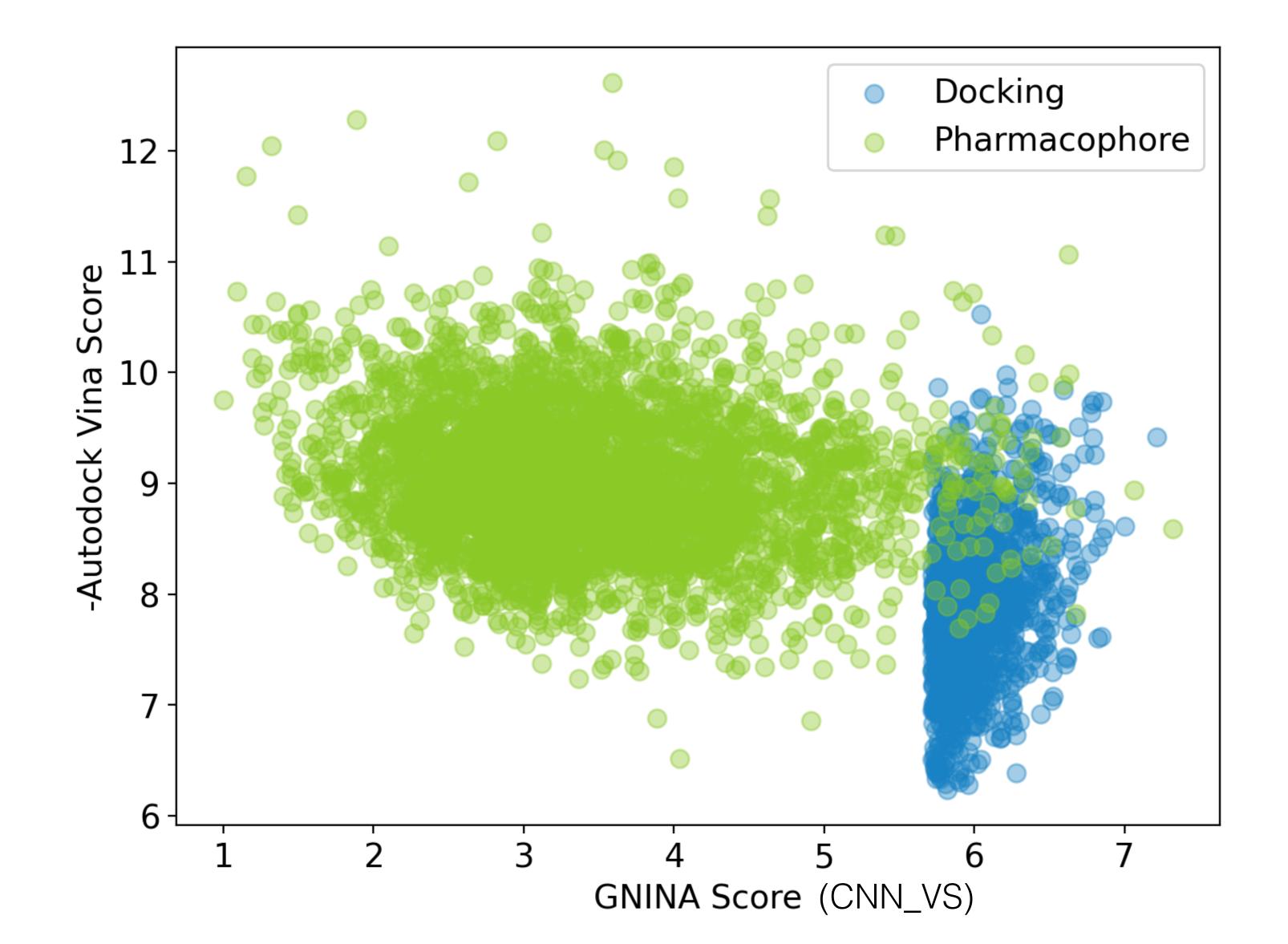
Molecule Libraries



3.5k ligands gnina scores vina scores

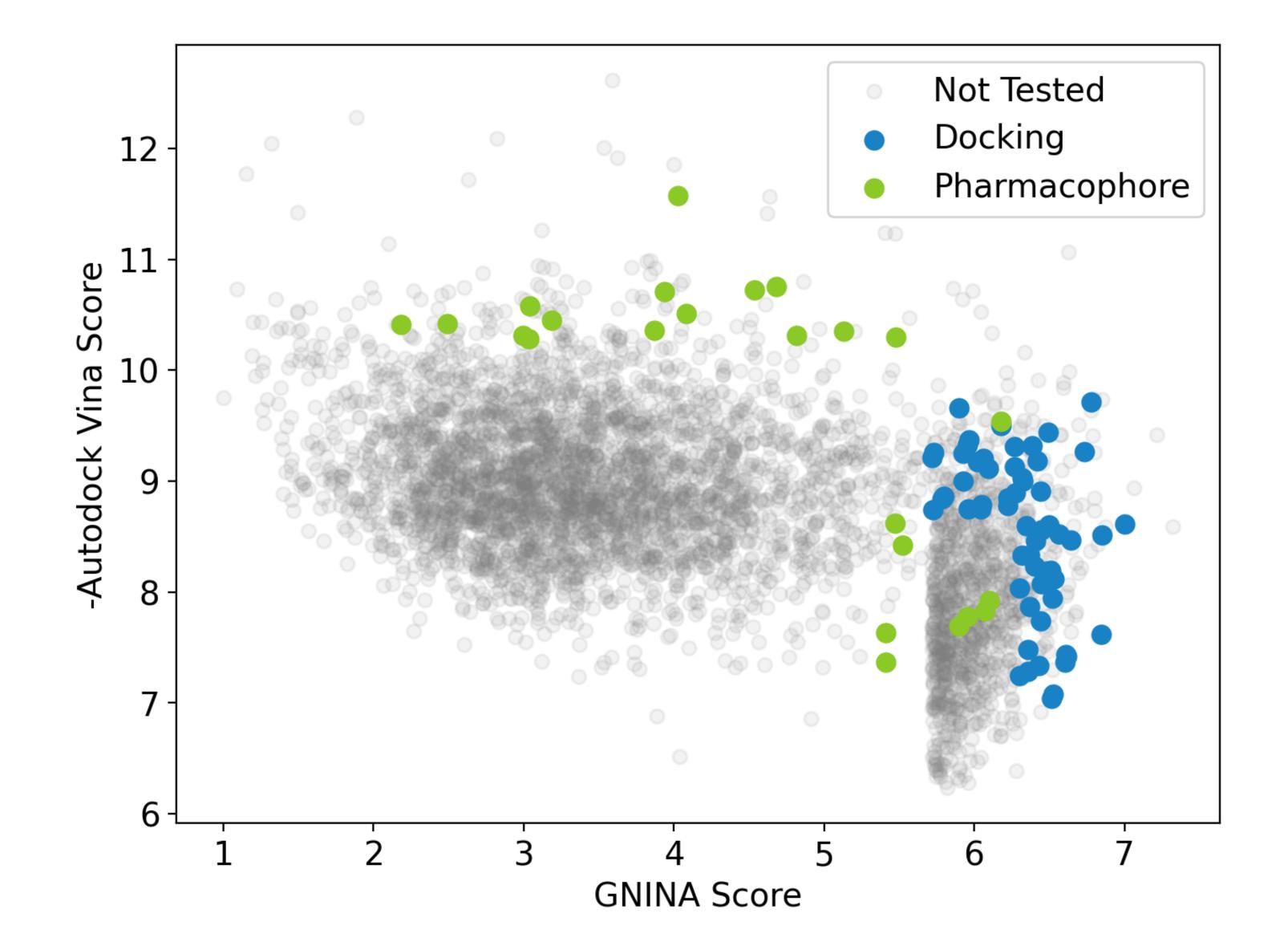
1k ligands gnina scores vina scores

Round 1 Results



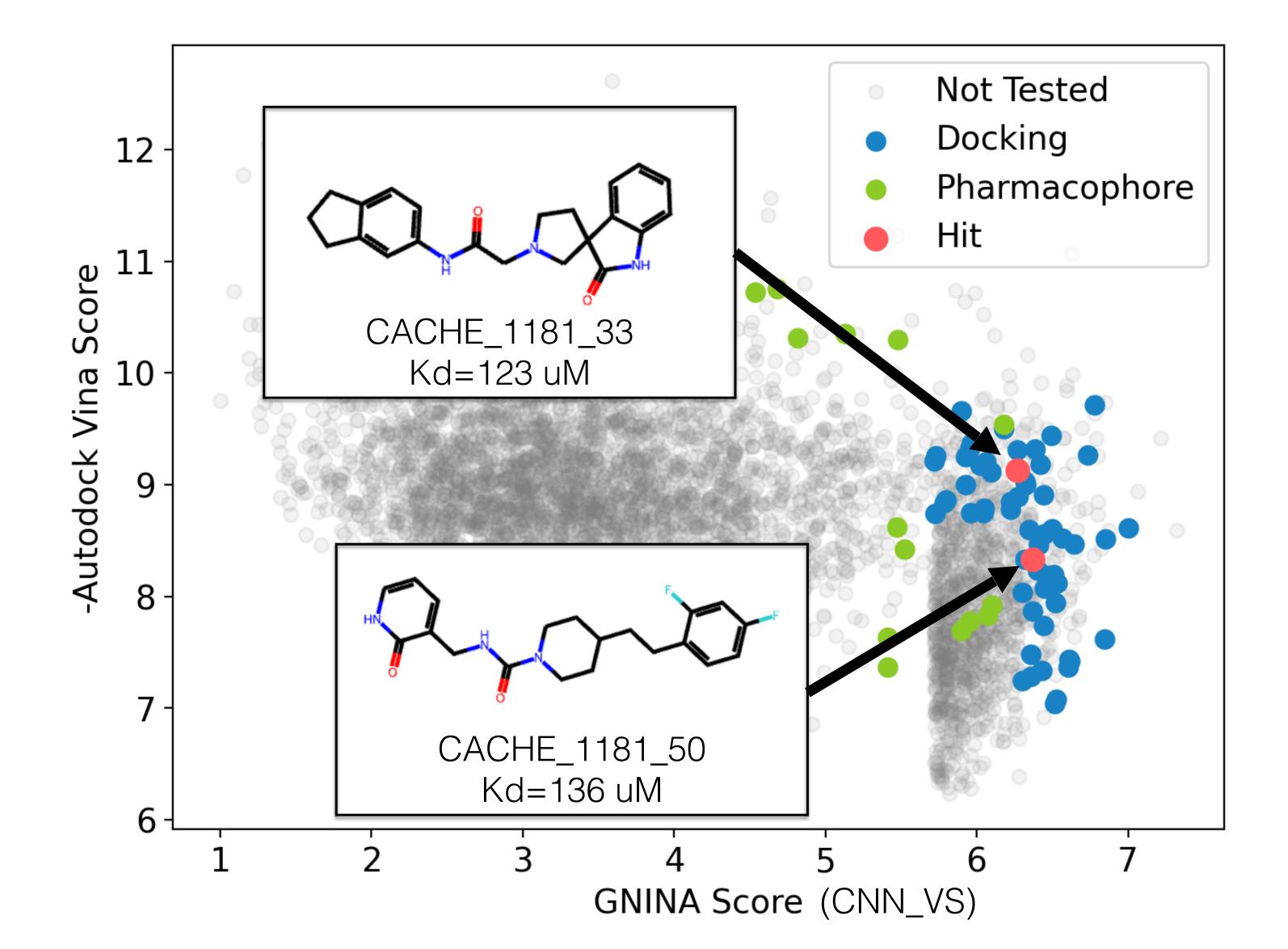
- Selection limited/ skewed by database availability
- 84 ligands tested
 - 59 from docking
 - 24 from pharm screen

Round 1 Results



- Selection limited/ skewed by database availability
- 84 ligands tested
 - 59 from docking
 - 24 from pharm screen

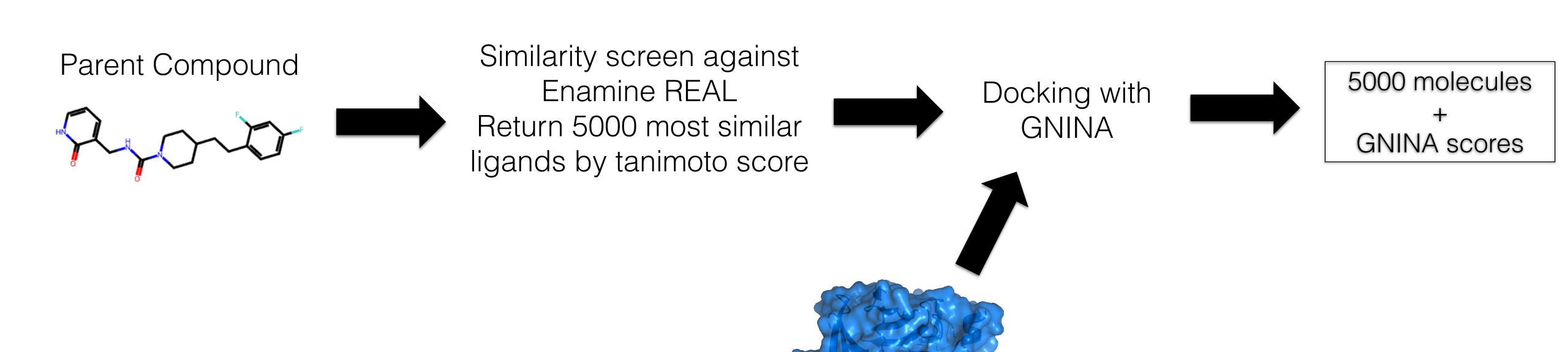
Round 1 Results



- 2/84 were hits
 - Both from docking

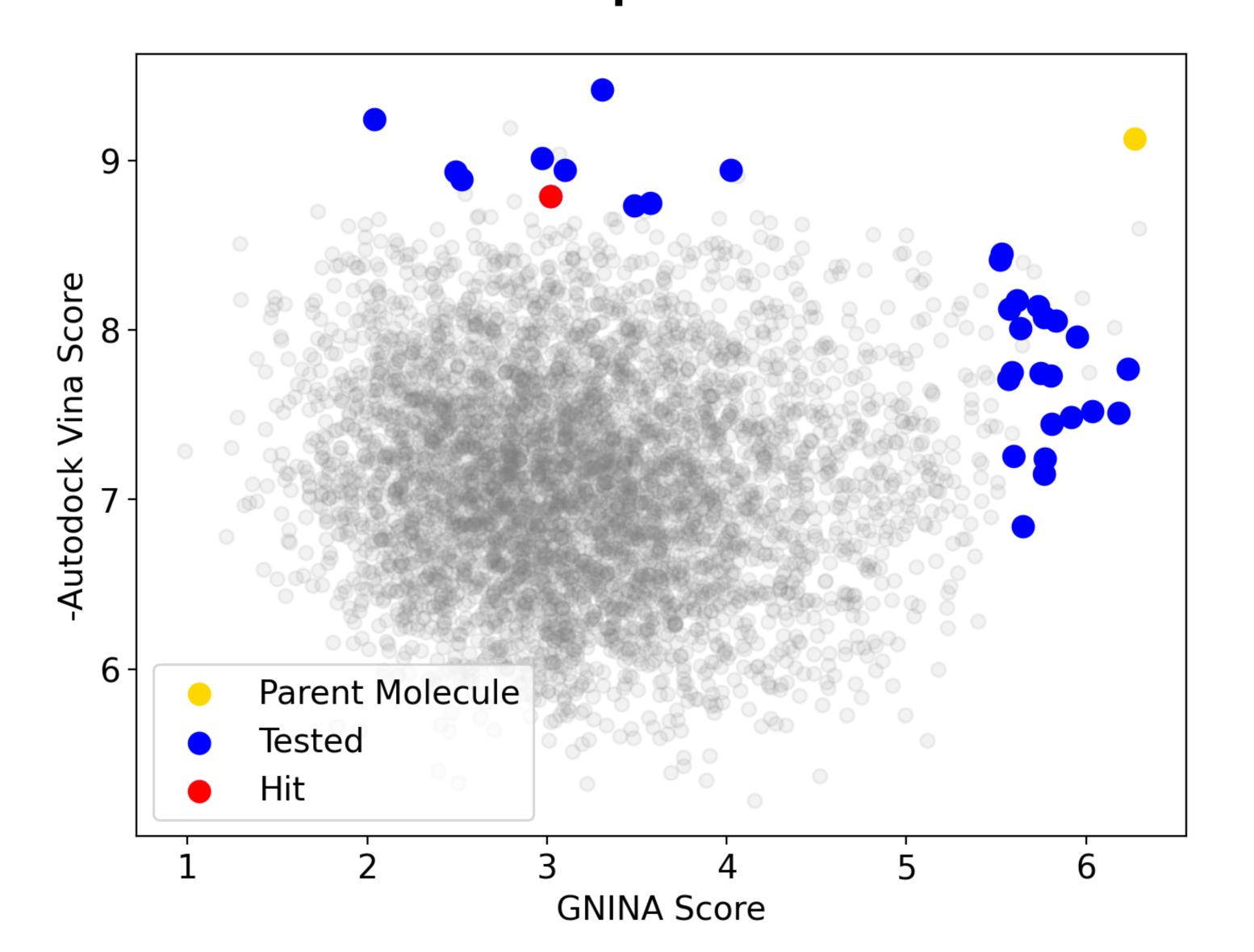
Round 2: Hit Optimization

Hit Optimization Pipeline

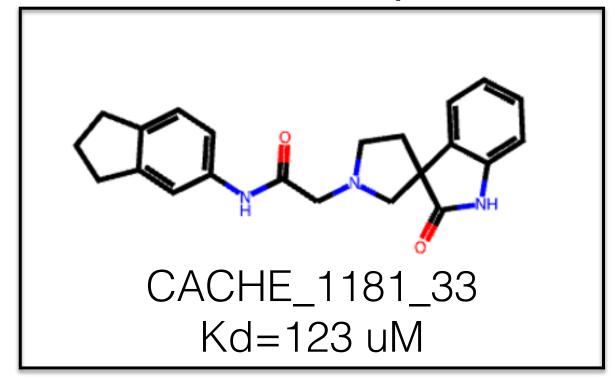


Crystal Structure

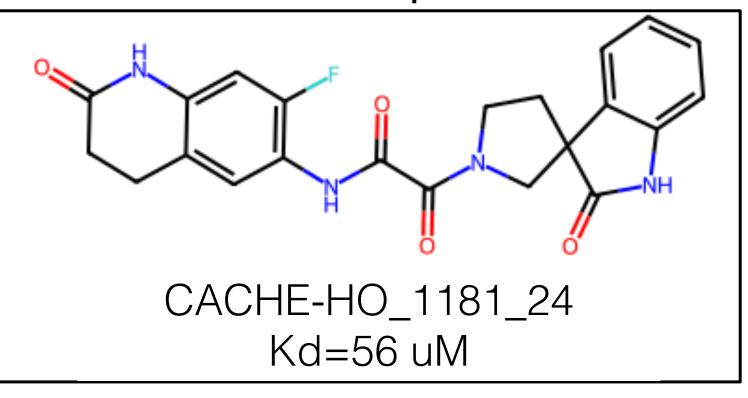
Hit Optimization Results



Parent Compound



Hit Compound

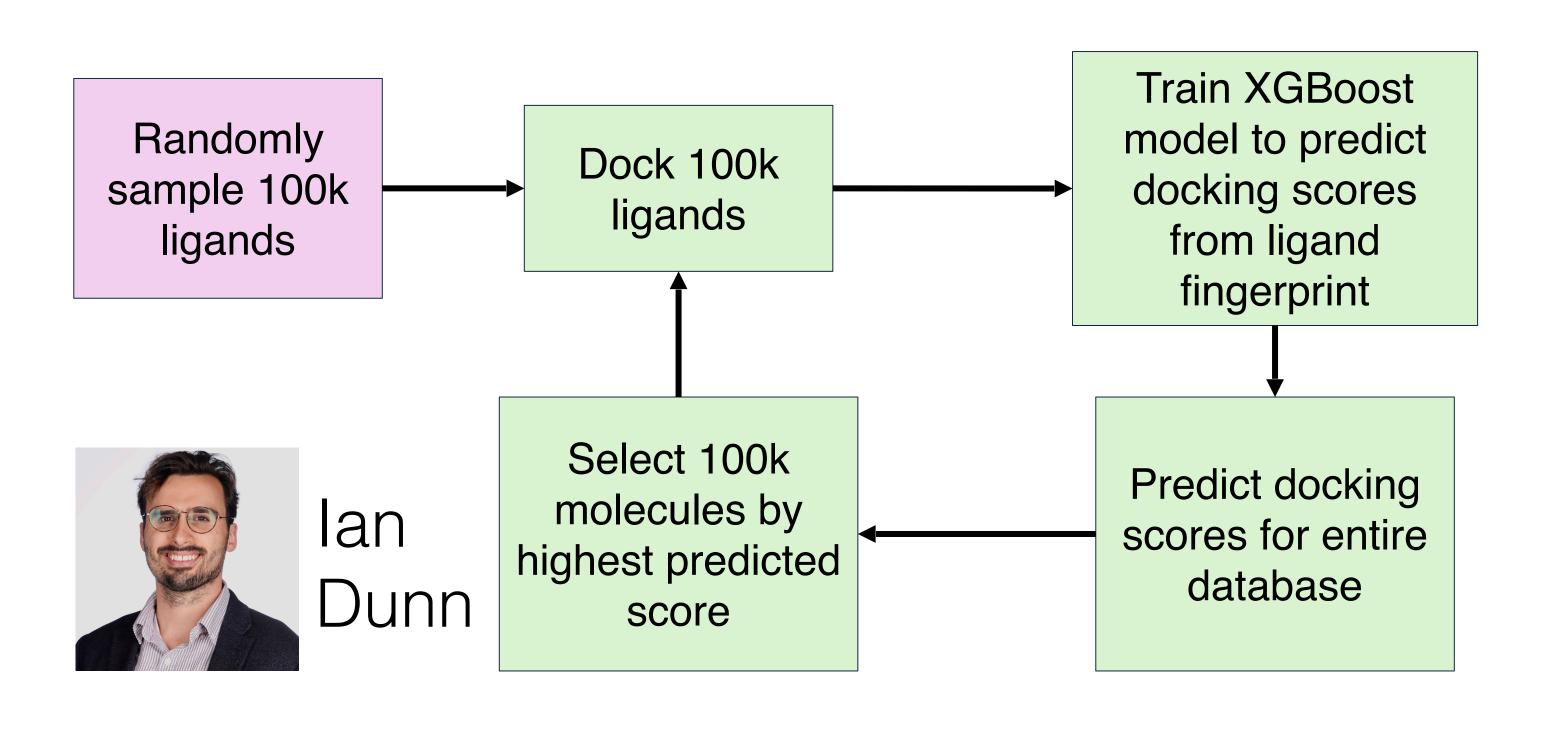


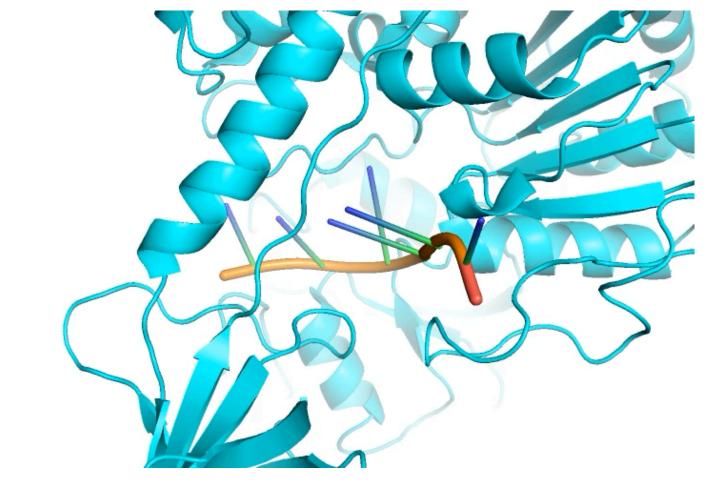
Final Results

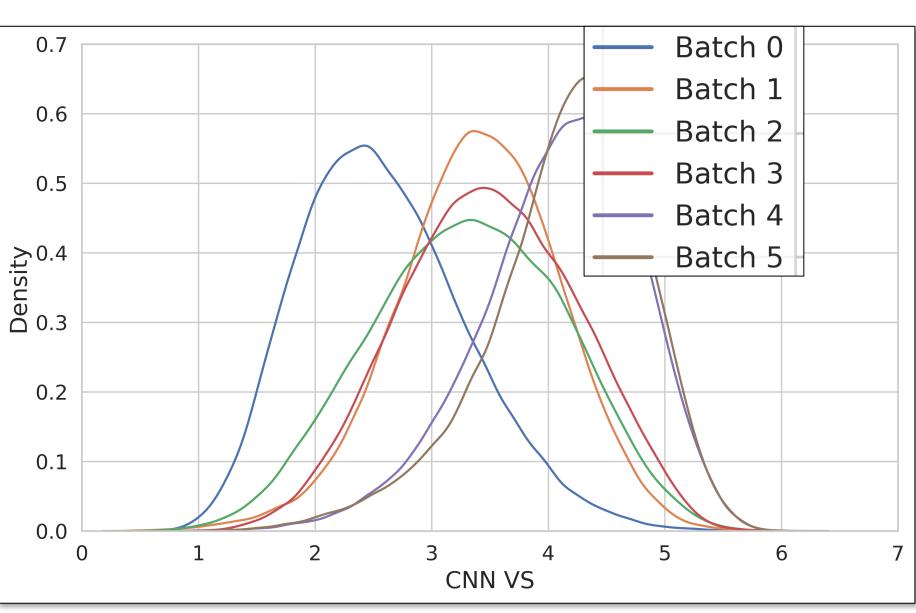
Participant	Participant ID	Aggregated score
David Koes, University of Pittsburgh	1181	18
Olexandr Isayev & Maria Kurnikova, Carnegie Mellon University & Artem Cherkasov, University of British Columbia	1209	18
Christina Schindler, Merck KGaA	1193	17
Dmitri Kireev, University of Missouri	1183	16
Christoph Gorgulla, St. Jude Children's Research Hospital and Harvard University	1195	16
Didier Rognan, Université Strasbourg	1202	16
Pavel Polishchuk, Palacky University	1210	16
Kam Zhang, Centre for Biosystems Dynamic Research, RIKEN	1188	15
Shuangjia Zheng, Shanghai Jiao Tong University (previously Galixir)	1187	14
Carlos Zepeda, Treventis/UHN	1200	14
Fabian Liessmann, Leipzig University	1201	14
	1179	13

CACHE Challenge #2

- RNA binding site of SARS-COV2 NSP13
- "Deep Docking" of Enamine (4B)

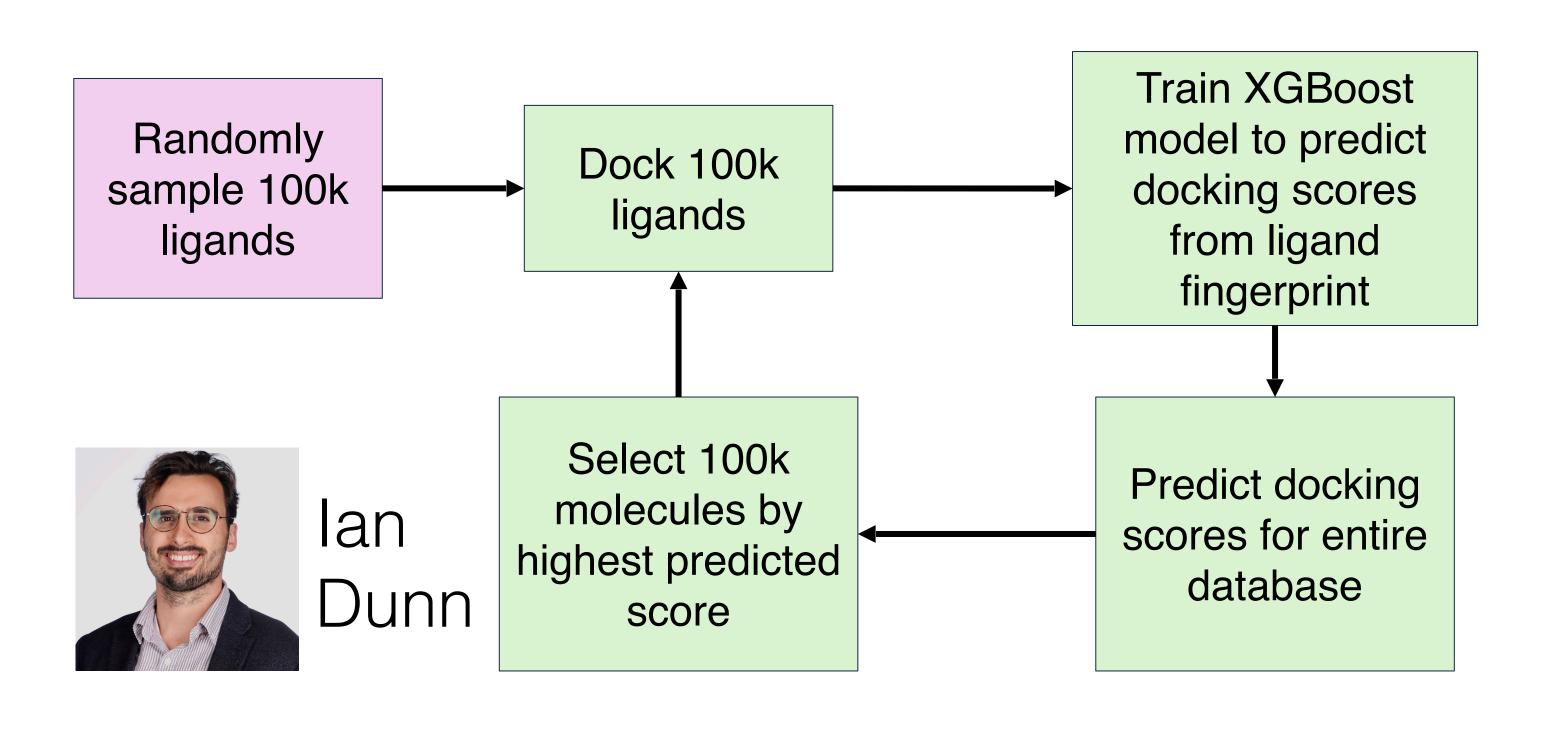


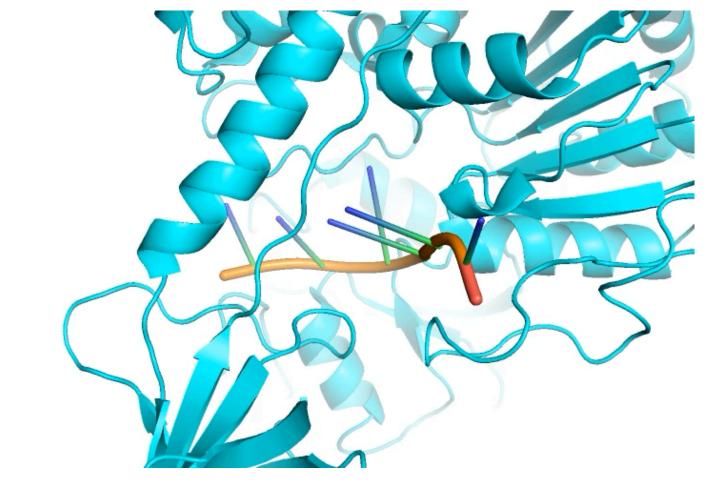


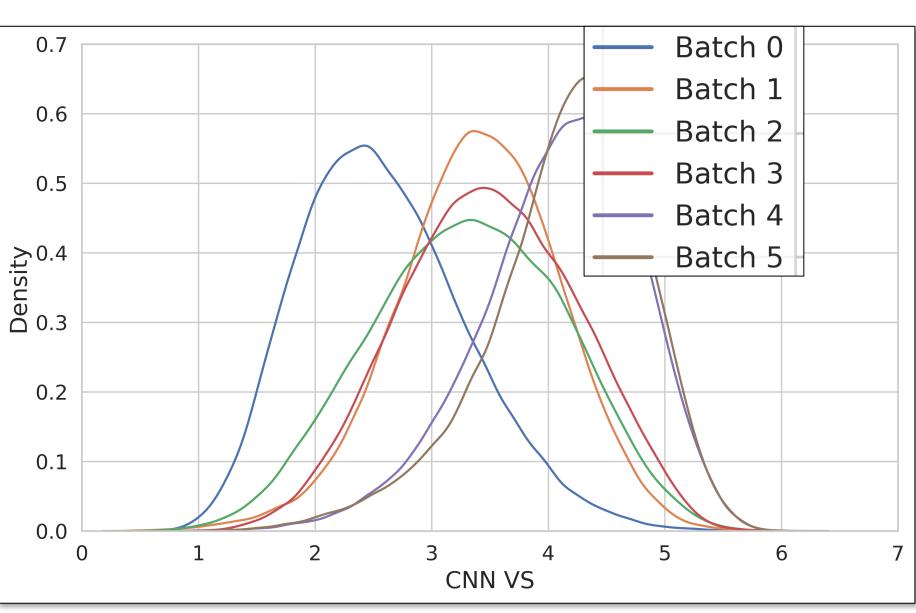


CACHE Challenge #2

- RNA binding site of SARS-COV2 NSP13
- "Deep Docking" of Enamine (4B)







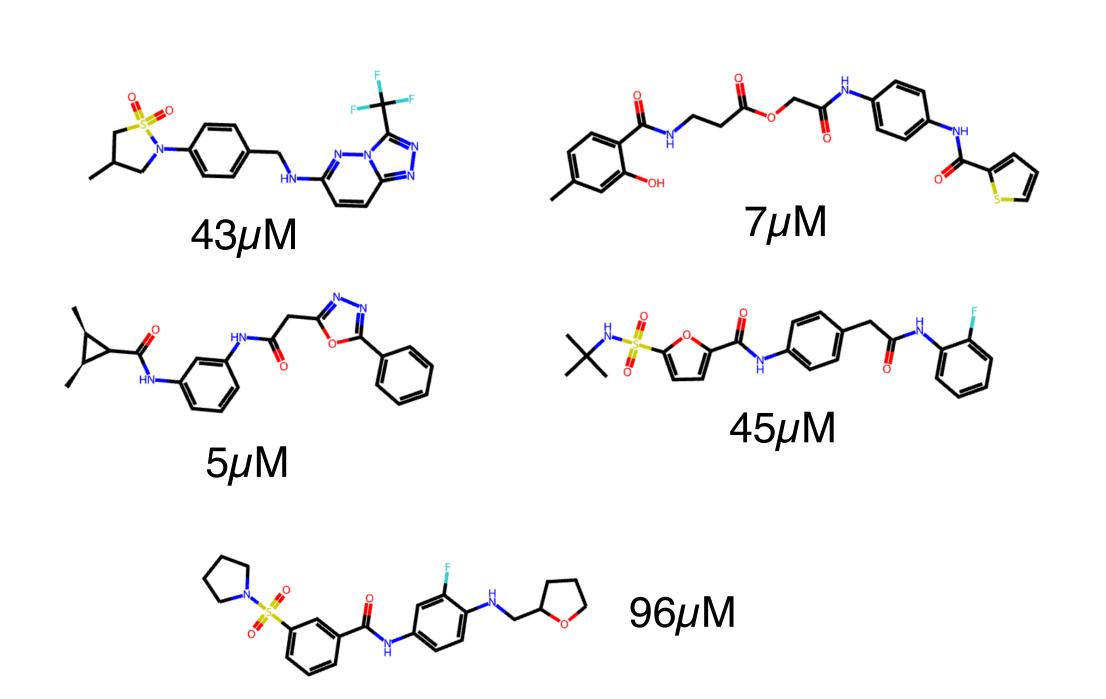
CACHE #2 Results

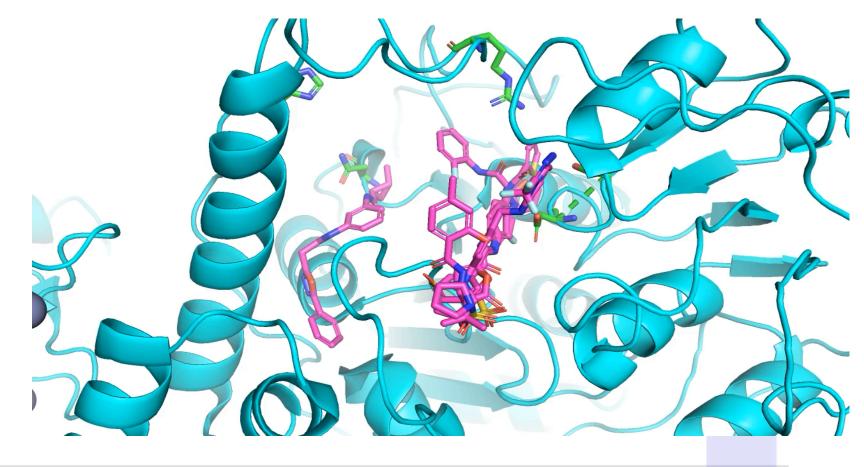
5/50 compounds identified as potential hits

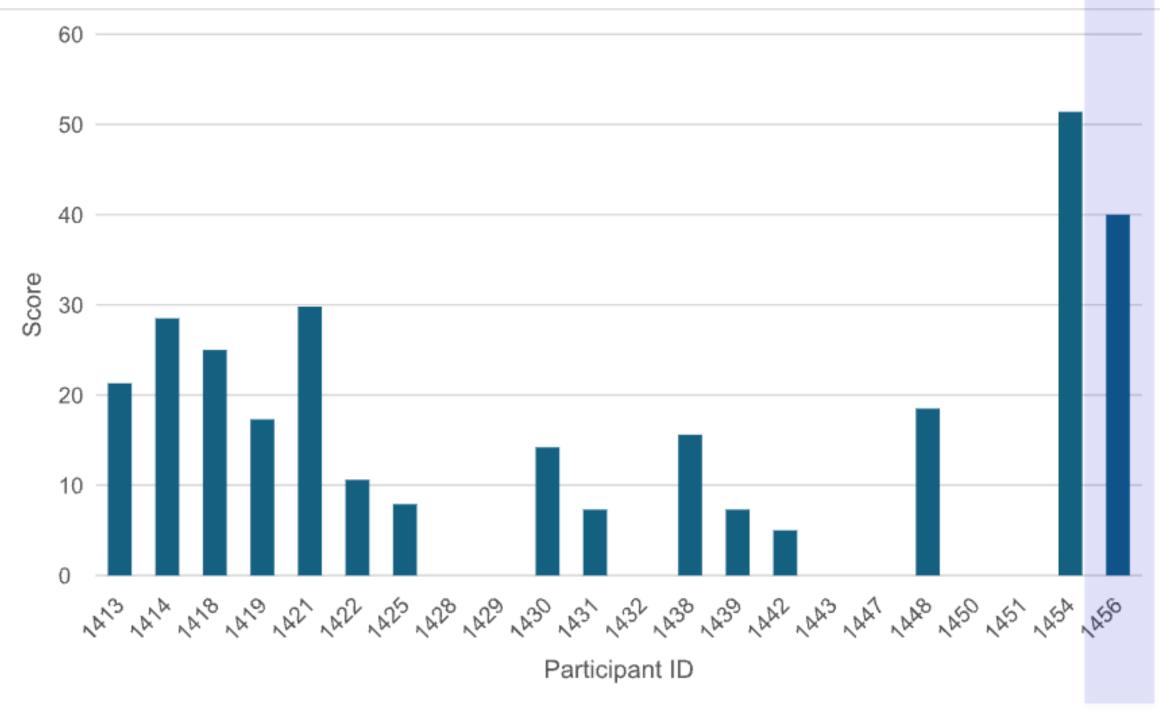
>2x the average hit rate

4/5 hits from last round of active learning

Highest affinity round 1 hit in the competition







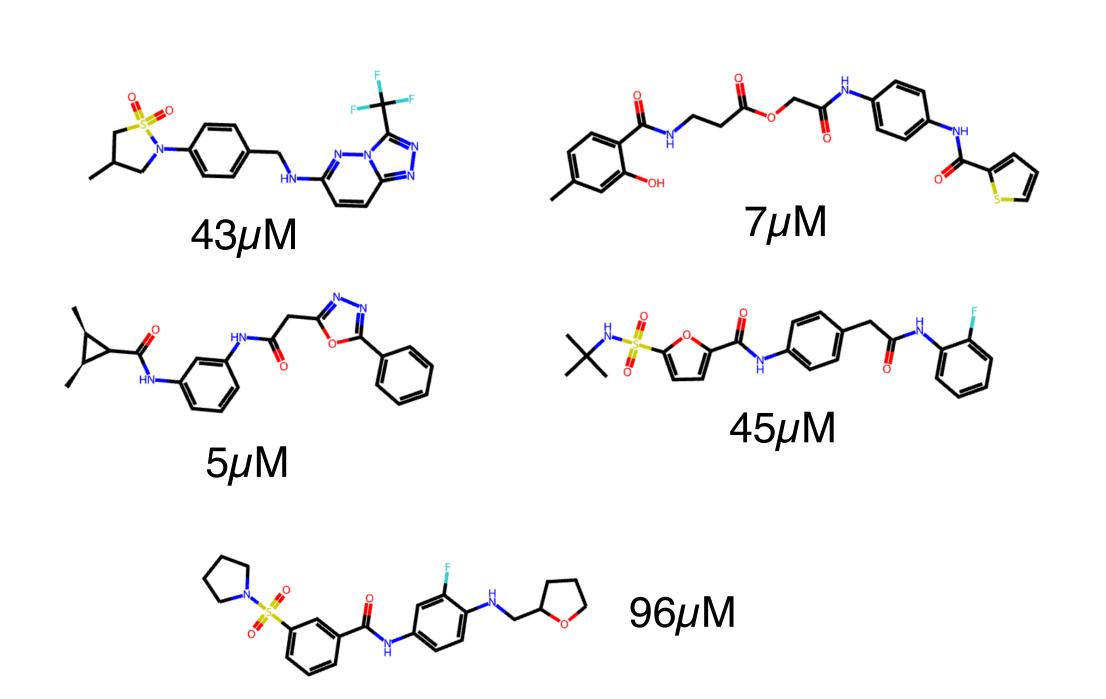
CACHE #2 Results

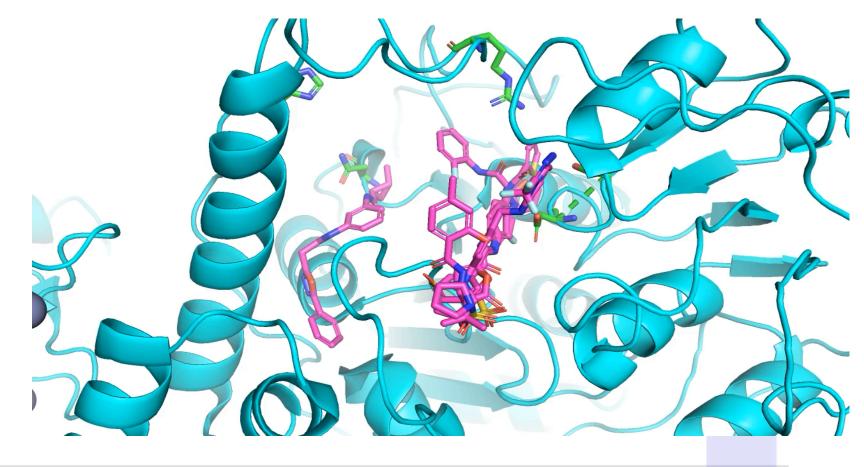
5/50 compounds identified as potential hits

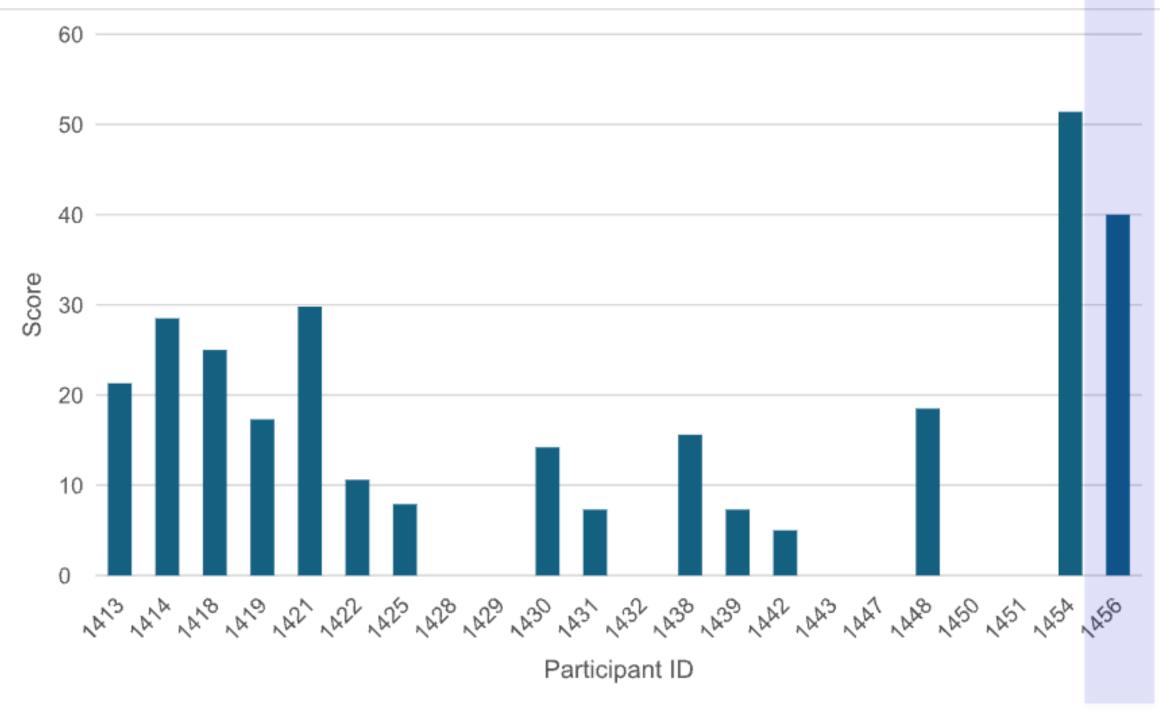
>2x the average hit rate

4/5 hits from last round of active learning

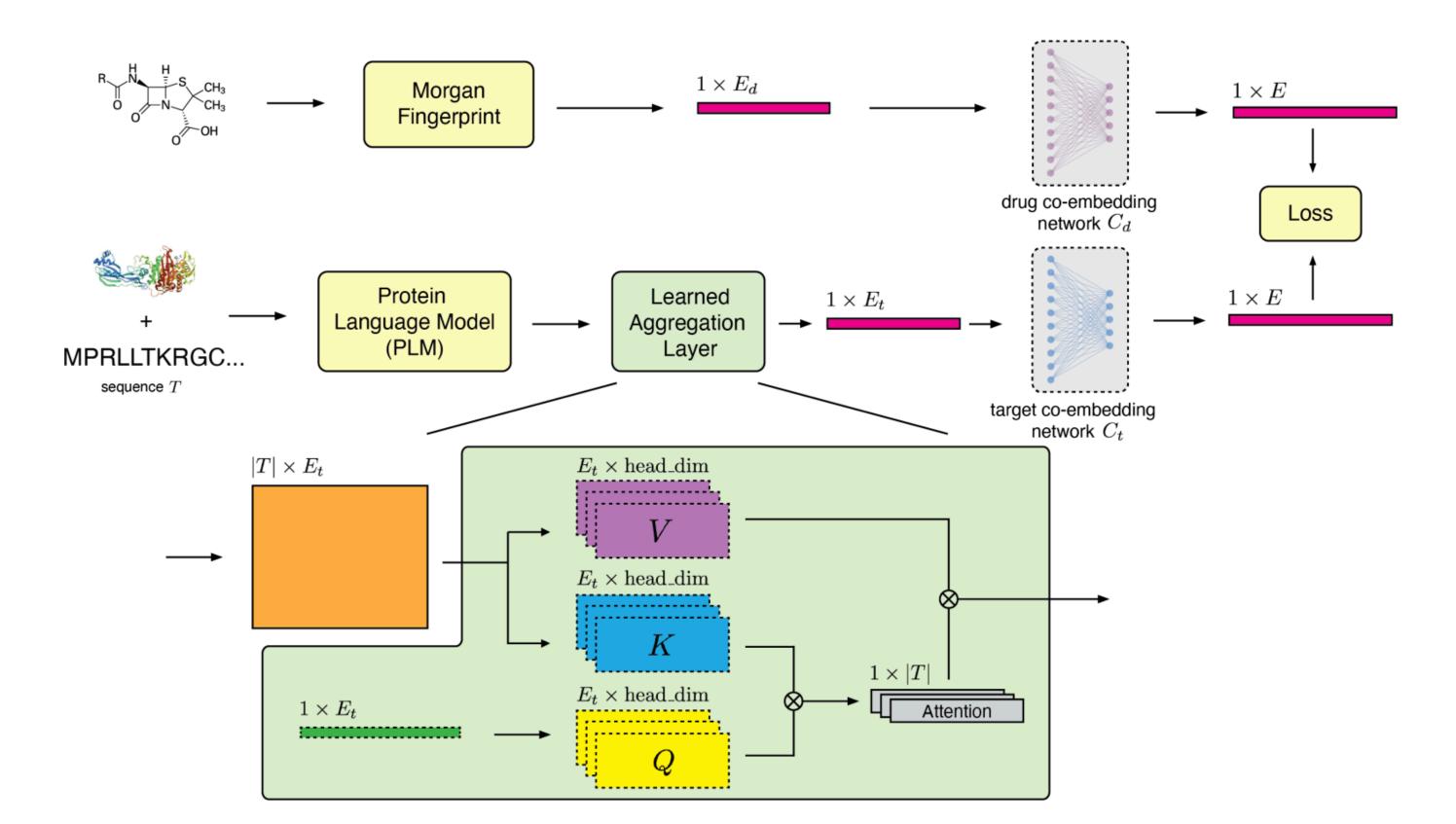
Highest affinity round 1 hit in the competition







Scalable Screening of Ultra Large Libraries



Learn co-embedding of ligands and proteins

Ligands are "close" to proteins they bind to

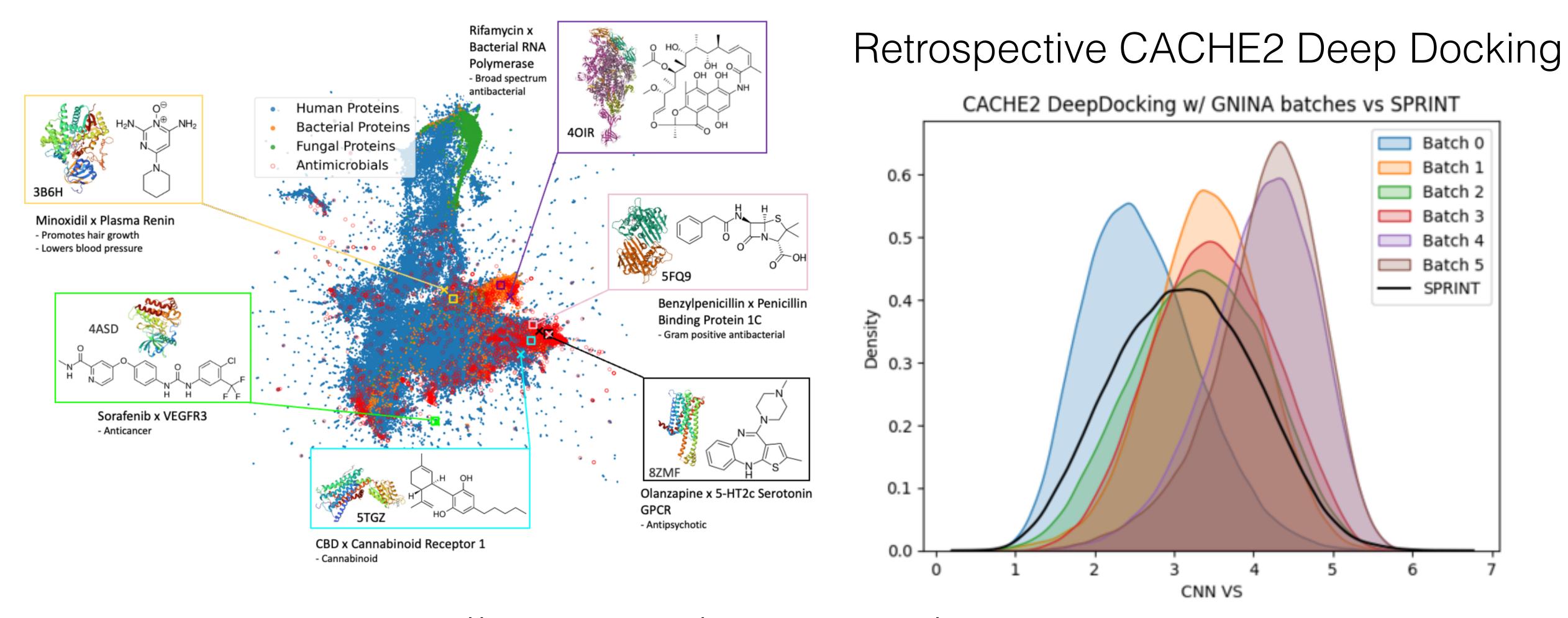
Quantitative Biology > Biomolecules

[Submitted on 23 Nov 2024 (v1), last revised 20 Jan 2025 (this version, v2)]

Scaling Structure Aware Virtual Screening to Billions of Molecules with SPRINT

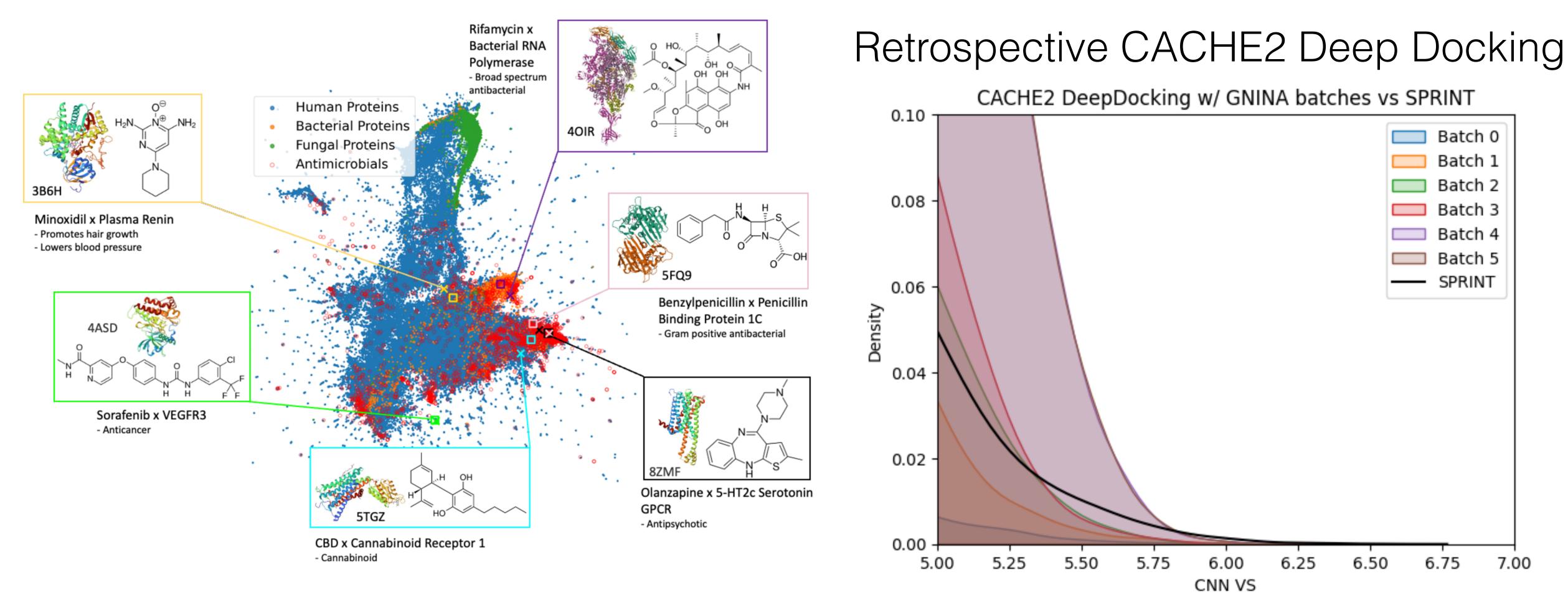
Andrew T. McNutt, Abhinav K. Adduri, Caleb N. Ellington, Monica T. Dayao, Eric P. Xing, Hosein Mohimani, David R. Koes

Enhanced Deep Docking with SPRINT

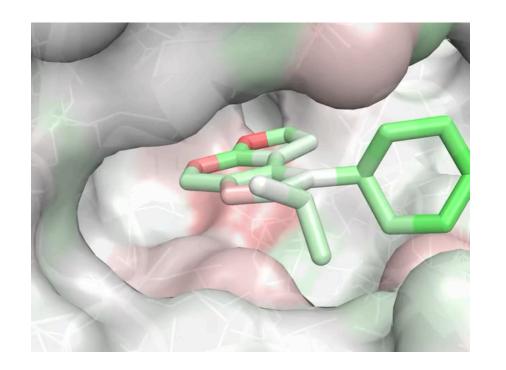


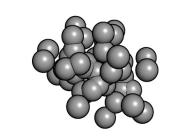
https://github.com/abhinadduri/panspecies-dti

Enhanced Deep Docking with SPRINT

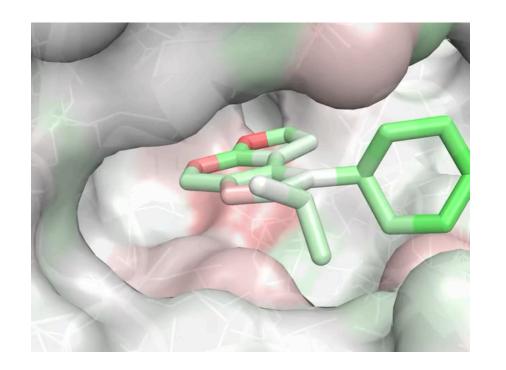


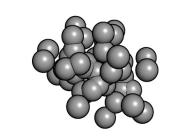
https://github.com/abhinadduri/panspecies-dti



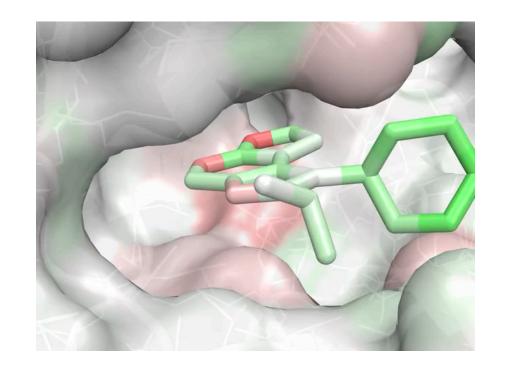


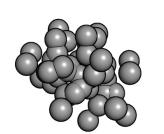
Deep learning works for molecules!



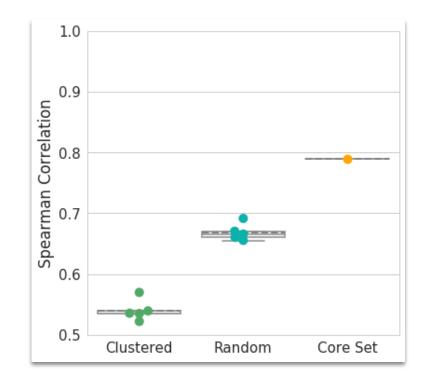


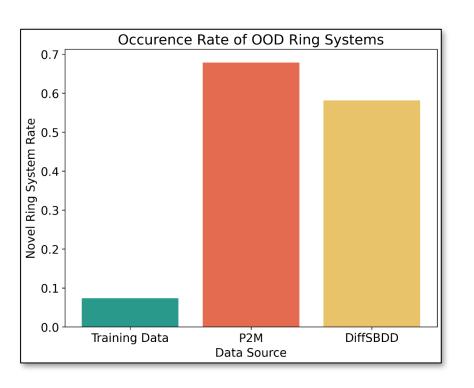
Deep learning works for molecules!



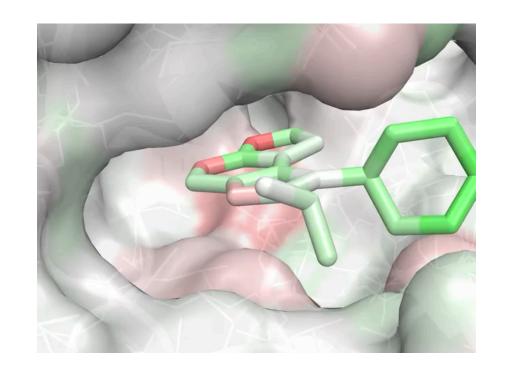


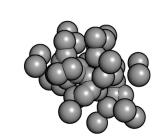
Deep learning works for molecules!



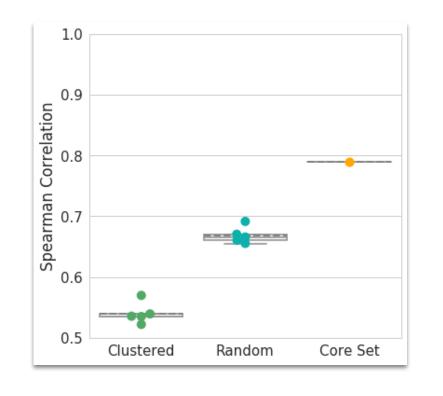


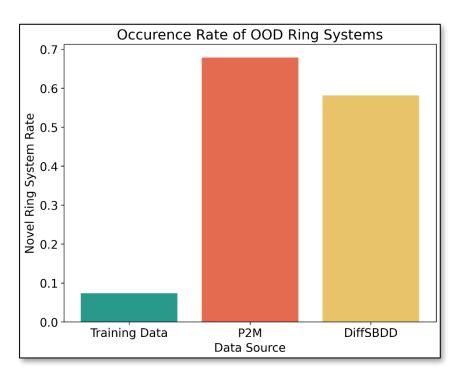
Rigorous evaluation is essential





Deep learning works for molecules!

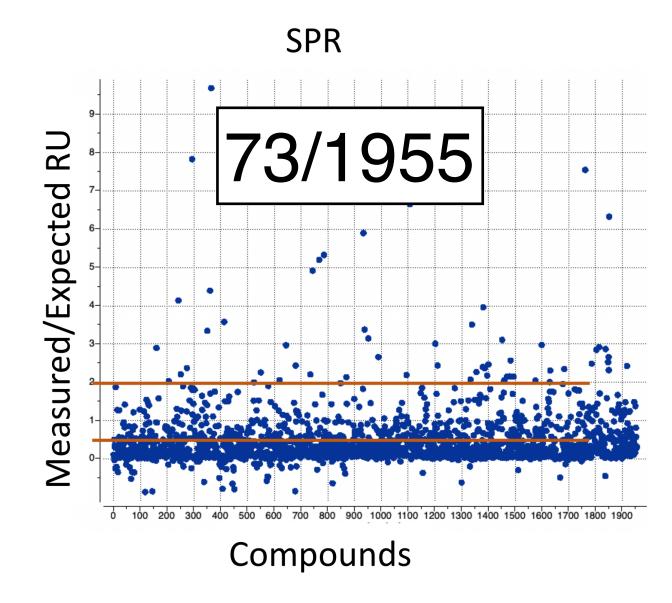


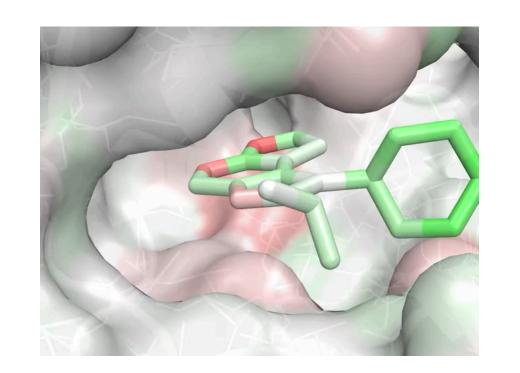


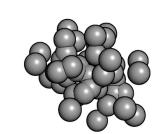
Rigorous evaluation is essential

No replacement for prospective evaluation

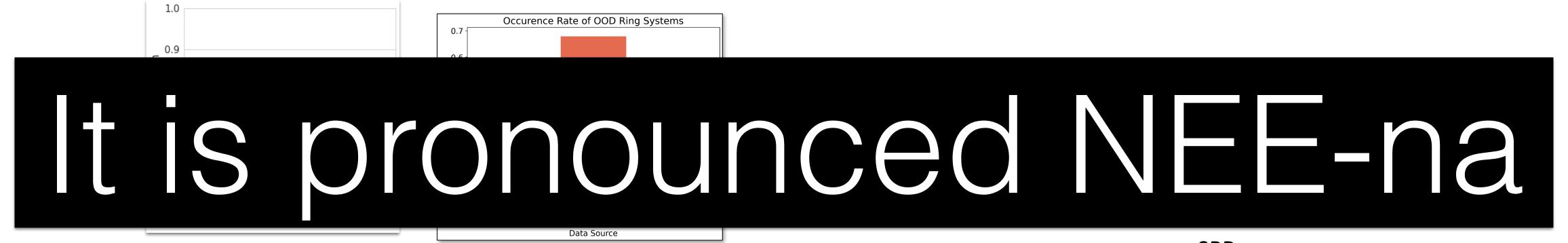
Still pretty bad





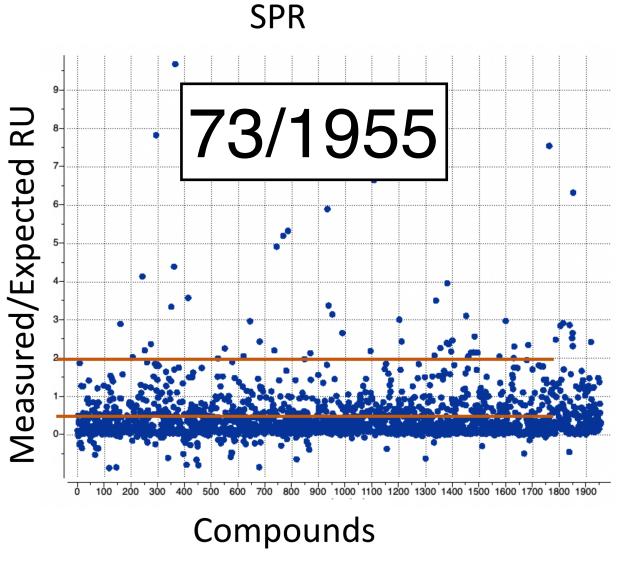


Deep learning works for molecules!



No replacement for prospective evaluation

Still pretty bad



Acknowledgements

Current

Ian Dunn Emma Flynn Riya Shah Rishal Aggarwal Drew McNutt Daniel Penaherrera Jacky Chen Somayeh Pirhadi Fareeda Abu-Juam Ben Krummenacher

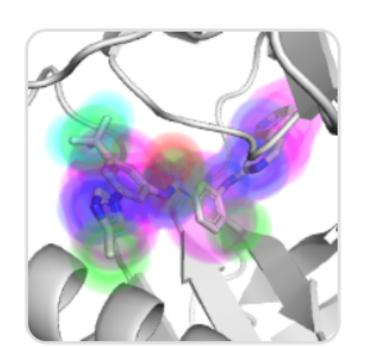
Previous

Jocelyn Sunseri Matthew Ragoza Tomohide Masuda Paul Francoeur Jonathan King Rocco Meli Josh Hochuli Elisa Idrobo Lily Turner Alec Helbling Andrew Jia Rich Iovanisci Ian Snyder Nick Rego

CHE-1800435

R01GM108340

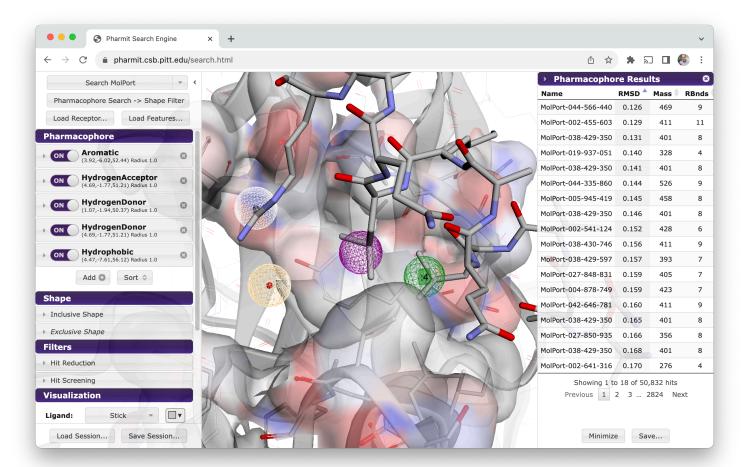
Shameless Plugs



gnina

https://github.com/gnina

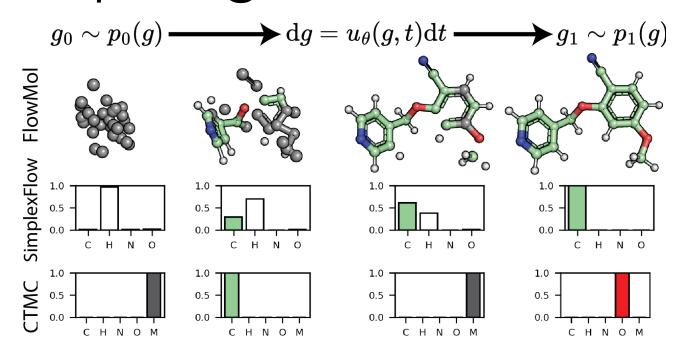
Pharmit



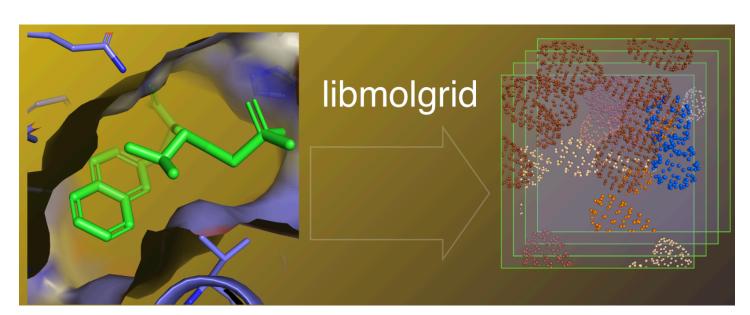
https://pharmit.csb.pitt.edu

FlowMol

https://github.com/Dunni3/FlowMol

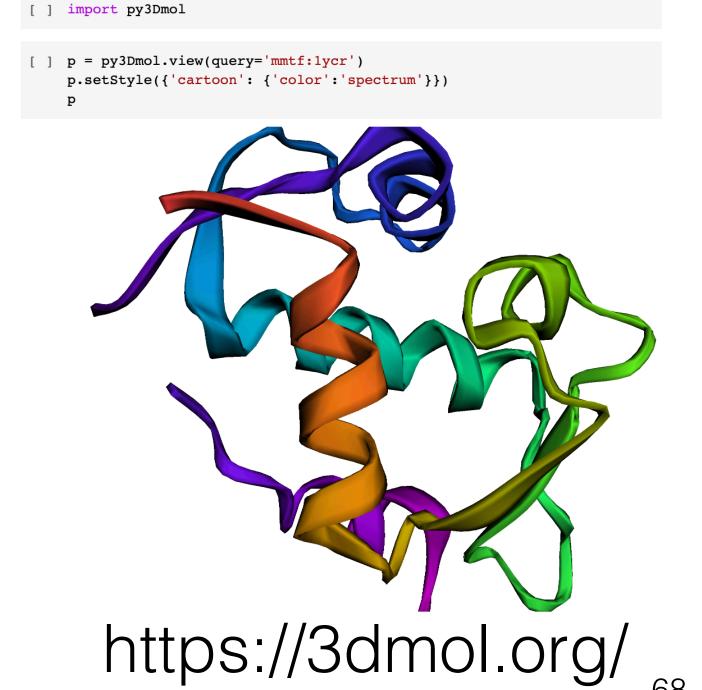


@dkoes.compstruct.org

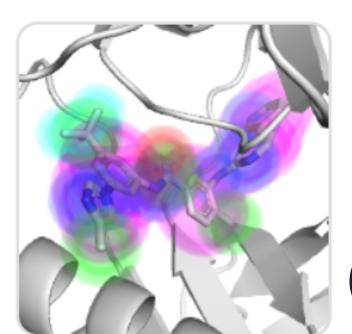


https://gina.github.io/libmolgrid/

py3Dmol



Shameless Plugs

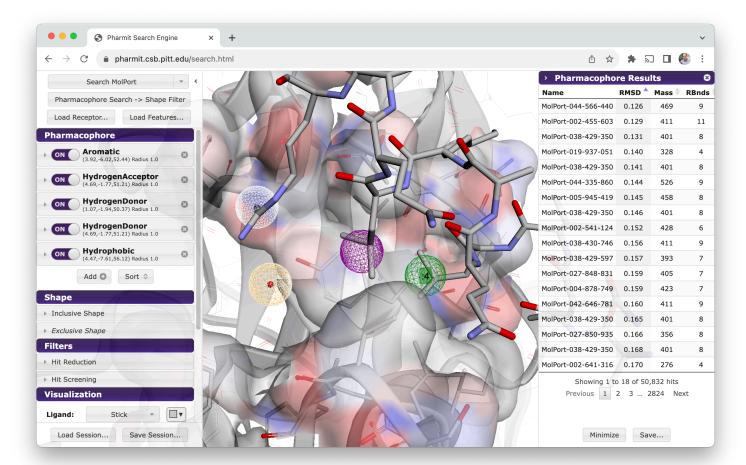


gnina

(pronounced NEE-na)

https://github.com/gnina

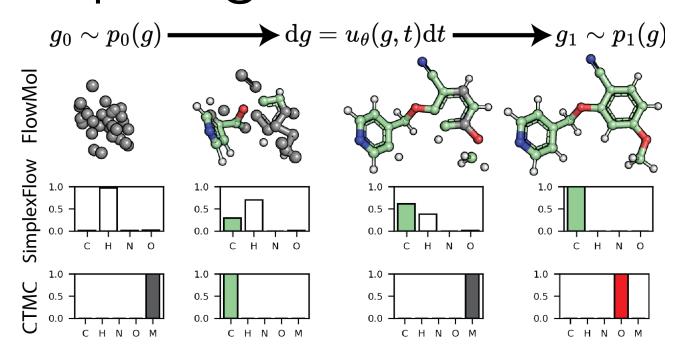
Pharmit



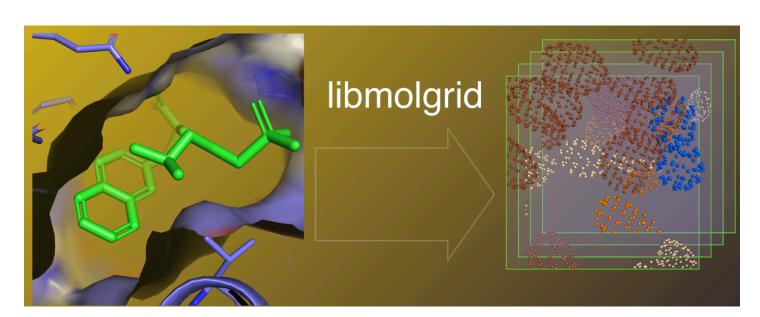
https://pharmit.csb.pitt.edu

FlowMol

https://github.com/Dunni3/FlowMol



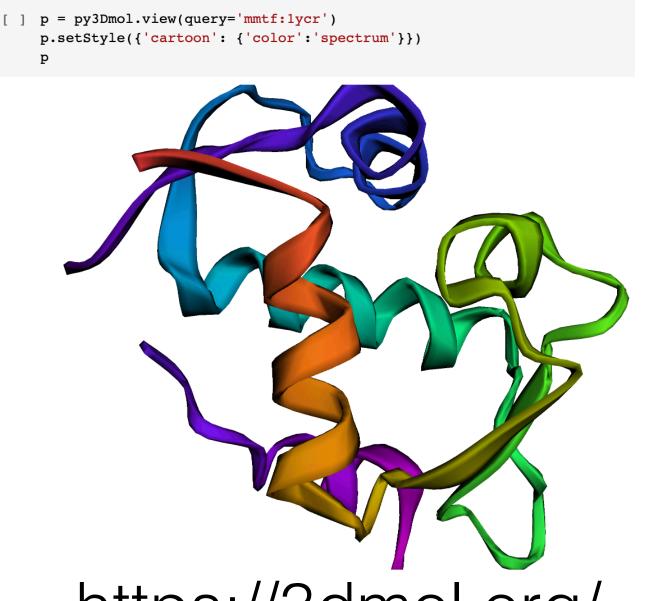
@dkoes.compstruct.org



https://gina.github.io/libmolgrid/

py3Dmol

[] import py3Dmol



https://3dmol.org/