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GNINA 1.0
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https://github.com/gnina/gnina
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Convolutional Neural Networks
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Convolutional Filters
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Protein Ligand Scoring
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388,736 Parameters

684,640 Parameters

Dense
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Cross-Docked Protein Ligand Scoring
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Affinity 
Prediction

VINA

18,450 complexes 
22.6 million poses
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Docking Performance
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Redocking Crossdocking
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https://github.com/gnina/gnina

GNINA 1.3

Caffe → Torch 
easy covalent docking 
retrained models
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GNINA 1.3 Performance
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Virtual Screening (DUD-E)Crossdocking
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GNINA vs End-to-end Deep Docking

GNINA DynamicBind Boltz1
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Generative Modeling
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Discriminative Model

Features X Prediction y
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Learning a Continuous Representation of 3D 
Molecular Structures with Deep Generative Models

NeurIPS 2020 Workshop 
Machine Learning for Structural Biology
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Model
Variational 

Latent Space
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Variational Autoencoding Examples

2BES

VAE Atom 
Fitting
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Generative Adversarial Networks

Generator

Discriminator

True Examples
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real dog 
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Diffusion Models
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Keypoint Conditioned Diffusion
Pocket Identification

Atomic Message Passing

Keypoint Generation

Keypoint-Conditioned 
Diffusion

Ian  
Dunn
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Keypoint Conditioned Diffusion
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Generated molecules are not synthetically 
accessible or physically plausible

Reference Molecules Generated Molecules

“epoxide, good luck with 
stability”

“no”

“certainly unstable”

“f*** no”
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Practical Measures of Molecule Quality
Existing literature primarily focuses on validity/valency; 	
necessary but insufficient dimensions of molecule quality 

We propose to evaluate molecule quality at the level 	
of functional groups and ring systems

Structural Alerts

Functional groups 
typically used to 
filter libraries in 
virtual screening 
workflows

OOD Rings

Ring systems that 
never appear in 
ChEMBL
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Practical Measures of Molecule Quality
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Unconditional Generation with FlowMol
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FlowMol v3

• State of the art validity
• Improves chemical plausibility and synthetic accessibility
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OMTRA

Tyler Katz Liv Toft Riya ShahIan Dunn
Ramith 

HettiarachchiJuhi Gupta

De novo Generation

Unconditional Pharmacophore Conditioned Pocket Conditioned Pocket & Pharm. Conditioned

Docking

Unconditional Pharmacophore Conditioned Pocket Conditioned Pocket & Pharm. Conditioned

Conformer Generation

OMTRA (One Model To Rule Them All)

De novo Generation

Unconditional Pharmacophore Conditioned Pocket Conditioned Pocket & Pharm. Conditioned

Docking

Unconditional Pharmacophore Conditioned Pocket Conditioned Pocket & Pharm. Conditioned

Conformer Generation

OMTRA (One Model To Rule Them All)

FlowMol3
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OMTRA: De Novo Design
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OMTRA: De Novo Design
Evaluated on Luo et al CrossDocked test set.
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OMTRA: Docking
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OMTRA: Docking
Evaluated on PoseBusters test set.
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OMTRA: Transfer Learning?
Evaluated on PLINDER test set.
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OMTRA: Pharmacophore Conditioning
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Generating Descriptions of Molecules
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Volume 12
Number 23
21 June 2021
Pages 7961–8270

EDGE ARTICLE
Jacob D. Durrant et al. 
DeepFrag: a deep convolutional neural network 
for fragment-based lead optimization

https://durrantlab.pitt.edu/deepfrag/



University of Pittsburgh	 Computational and Systems Biology

Prospective Evaluation
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CACHE Challenge #1

Ian Dunn
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A Tale of Two Methods
Large-Scale Docking with GNINA Pharmacophore Screening with Pharmit

50
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51
http://pharmit.csb.pitt.edu/

http://pharmit.sf.net
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High-throughput Docking Pipeline

Docking with 
GNINA

Docking with 
GNINA

1000 molecules, 
+ 

GNINA Scores

~7 million molecules

Crystal Structure

Top 1k Molecules 
by GNINA score

MD Ensemble Structures

52
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Pharmacophore Generation via Fragment Docking

Molecule Fragments

Crystal Structure

Docking with 
GNINA

Pharmacophore Generation

53
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Pharmacophore Pipeline

54

Pharmacophore Screening 
with PHARMIT

3572 molecules 
+  

GNINA scores

Pharmacophore 
Generation

MD Ensemble Docking 
with GNINA
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Pharmacophore Pipeline
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Pharmacophore Screening 
with PHARMIT

3572 molecules 
+  

GNINA scores

Pharmacophore 
Generation

MD Ensemble Docking 
with GNINA



University of Pittsburgh	 Computational and Systems Biology

Round 1 Submission

Large-scale 
docking

Pharmacophore 
screen

1k ligands 3.5k ligands
gnina scores gnina scores
vina scores vina scores

2 screening methods
2 scoring methods

55
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Round 1 Results

• Selection limited/
skewed by database 
availability 

• 84 ligands tested 
• 59 from docking 
• 24 from pharm 

screen

56(CNN_VS)
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Round 1 Results

• 2/84 were hits 
• Both from docking

57

CACHE_1181_33 
Kd=123 uM

CACHE_1181_50 
Kd=136 uM

(CNN_VS)
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Round 2: Hit Optimization
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Hit Optimization Pipeline

59

Parent Compound Similarity screen against  
Enamine REAL 

Return 5000 most similar 
ligands by tanimoto score

Docking with 
GNINA

Crystal Structure

5000 molecules 
+  

GNINA scores
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Hit Optimization Results

60

CACHE_1181_33 
Kd=123 uM

Parent Compound

CACHE-HO_1181_24 
Kd=56 uM

Hit Compound
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Final Results

61
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CACHE Challenge #2
• RNA binding site of SARS-COV2 NSP13 
• “Deep Docking” of Enamine (4B)

62

Dock 100k  
ligands 

Train XGBoost 
model to predict 
docking scores 

from ligand 
fingerprint

Predict docking 
scores for entire 

database

Select 100k 
molecules by 

highest predicted 
score

Randomly 
sample 100k 

ligands

Ian  
Dunn
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CACHE #2 Results
5/50 compounds identified as potential hits

>2x the average hit rate
4/5 hits from last round of active learning
Highest affinity round 1 hit in the competition

43µM 7µM

45µM
 5µM

 96µM
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Scalable Screening of Ultra Large Libraries

Learn co-embedding of 
ligands and proteins 

Ligands are "close" to 
proteins they bind to
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Enhanced Deep Docking with SPRINT
Retrospective CACHE2 Deep Docking

https://github.com/abhinadduri/panspecies-dti
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It is pronounced NEE-na
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Shameless Plugs

68

py3Dmol

Pharmit

https://github.com/Dunni3/FlowMol
FlowMol

https://github.com/gnina

https://3dmol.org/https://pharmit.csb.pitt.edu

@dkoes.compstruct.org

https://gina.github.io/libmolgrid/
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