Deep Learning for Computational Drug Poteover Dovid Koes

Dodavid koes

Intelligent Systems Program Al Forum October 19, 2018

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

BASIC RESEARCH	DRUG DISCOVERY	PRE- CLINICAL		CLINICAL TRIALS		F RE	DA VIEW	POST-APPROVAL RESEARCH & MONITORING
			PHASE I	PHASE II	PHASE III			PHASE IV
							1 F	DA-
								OVED CINE
	POTE	NTIAL NE	W MEDICINES					
							\$2	_6
							BILL	ION
						ILLED		
			MITTED			SUBM	ROVAL	
			SUB SUB	NUMBER OF VOLUNTE	ERS	A/BL ^A	APPR	
			TENS	HUNDREDS	THOUSANDS	ND	FD/	

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

BASIC RESEARCH	DRUG DISCOVERY	PRE- CLINICAL		CLINICAL TRIALS		FDA REVIEW	POST-APPROVAL RESEARCH & MONITORING
			PHASE I	PHASE II	PHASE III		PHASE IV
						1	-DA-
						APPR MFD	ROVED
	POTE	NTIAL NE	W MEDICINES				
						\$7	2_6
		11	f you stop fail	ling so often	you massively	BIL	
		r	educe the co	ost of drug de	evelopment.	E I	
				CE	O, GlaxoSmithKline	SUBM	OVAL
			SUBN CONTRACTOR	NUMBER OF VOLUNTE	ERS	A/BLA	APPR
			TENS	HUNDREDS	THOUSANDS	Q	PD

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

CLINICAL TRIALS			FDA REVIEW		POST-APPROVAL RESEARCH & MONITORING
PHASE II	PHASE III				PHASE IV
			1 APP	FE RC	DA- DVED
			MED		CINE
so often	vou massivelv		Ş. Rii	∠, 	.6 NN
of drug de	evelopment.				
CE	— Sir Andrew Witty O, GlaxoSmithKline	A SUBMIT		ROVAL	
BER OF VOLUNTE	ERS	A/BL		A APP	
HUNDREDS	THOUSANDS	ND		FD,	

Source: Pharmaceutical Research and Manufacturers of America (<u>http://phrma.org</u>)

- 1. Does the compound do what you want it to?
- 2. Does the compound **not** do what you **don't** want it to?
- 3. Is what you want it to do the right thing?

Target Identification

Screening

Compounds

Hits

Lead Identification

Lead Optimization

Target Identification

Virtual

Compounds

Hits

Structure Based Drug Design

Affinity Prediction Pose Prediction **Binding Discrimination**

Virtual Screening

Lead Optimization

Structure Based Drug Design

Affinity Prediction Pose Prediction **Binding Discrimination**

Virtual Screening

Lead Optimization

Drug Discovery Funnel

http://pharmit.csb.pitt.edu

			θ		
7	<u>ک</u>	2	:		
lts			8		
Mass		RBn	ds		
395	5		1 利		
330)		0		
607	7	1	5		
314	1		0		
275	5		0		
351	ı		D		
330	D		D		
300)		1		
288	3		0		
272	2		0		
272	2		0		
272	2		0		
296	5		0		
378	3		1		
312	2		1		
375	5		3		
288	3	(0		
607	7	1	.5		
,336 hits					
econds	ext				
ve					

Drug Discovery Funnel

$$egin{array}{rll} {
m gauss}_1(d) &= w_{{
m guass}_1} e^{-(d/0.5)^2} \ {
m gauss}_2(d) &= w_{{
m guass}_2} e^{-((d-3)/2)^2} \ {
m repulsion}(d) &= \left\{ egin{array}{c} w_{{
m repulsion}} d^2 & d < 0 \ 0 & d \geq 0 \end{array}
ight.$$

$$ext{hydrophobic}(d) \;=\; \left\{egin{array}{cc} w_{ ext{hydrophobic}} & d \ 0 & d \ w_{ ext{hydrophobic}}(1.5-d) & d \ w_{ ext{hydrophobic}}(1.5-d) & o \end{array}
ight.$$

$$\mathrm{hbond}(d) \;=\; \left\{egin{array}{cc} w_\mathrm{hbond} & d < -0. \ 0 & d > 0 \ w_\mathrm{hbond}(-rac{10}{7}d) & otherwind \end{array}
ight.$$

Protein-Ligand Scoring

Computational and Systems Biology

Pose Prediction

Binding Discrimination

Affinity Prediction

The **universal approximation theorem** states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

At last — a computer program that can beat a champion Go player PAGE 484 **ALL SYSTEMS GO**

CONSERVATION SONGBIRDS A LA CARTE Illegal harvest of millions of Mediterranean birds PAGE 452

RESEARCH ETHICS SAFEGUARD TRANSPARENCY Don't let openness backfire on individual PAGE 459

POPULAR SCIENCE WHEN GENES GOT 'SELFISH' Dawkins's calling card forty years on PAGE 462

Vol. 529, No. 758 9 770028 083095

⇒ NATURE.COM/NATUR

Deep Learning

At last – a computer program that can beat a champion Go player PAGE 48 **ALL SYSTEMS GO**

CONSERVATION SONGBIRDS À LA CARTE

RESEARCH ETHICS SAFEGUARD TRANSPARENCY

POPULAR SCIENCE WHEN GENES GOT 'SELFISH' > NATURE.COM/NA

Convolutional Neural Networks

Convolutional Filters

-1	-1	-1
0	0	0
1	1	1

-1	0	1	-1	-1	-1
-1	0	1	-1	8	-1
-1	0	1	-1	-1	-1

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

- (R,G,B) pixel \rightarrow
- (Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Cons

- coordinate frame dependent
- pairwise interactions not explicit

Why Grids?

Pros

- clear spatial relationships
- amazingly parallel
- easy to interpret

Data Augmentation

2000

Data Augmentation

2000

Optimized Models

Default2018

Default2017

Pose Results

Redocked Pose

Default2017

Pose Results

Crossdocked Pose

Vina 12 10 8 6 2 Spearman = 0.473, RMSE = 1.8870 10 12 8 \mathbf{O} Experiment Experiment

But what is it learning?

AliphaticCarbon

OxygenDonorAcceptor

OxygenAcceptor

| 2×| 2×| 2×32

Convolution 3×3×3

Rectified Linear Unit

| 2×| 2×| 2×64

Max Pooling 2×2×2

6x6x6x64

Convolution x3x3 \mathbf{M}

Rectified Linear Unit

6×6×6×128

Pseudo-Huber Loss Softmax+Logistic Loss

Fully Connected

Fully Connected

Computational and Systems Biology

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

$\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$

$\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$

Iterative Refinement

Iterative Refinement

Iterative Refinement

Generative Modeling

Discriminative Model

Features X -

Computational and Systems Biology

Generative Model

Features X

Generative Model

Computational and Systems Biology

Generative Model

Computational and Systems Biology

→ Features X

True Examples

Generator

True Examples

Generator

Generative Adversarial Networks https://arxiv.org > stat 🔻

by IJ Goodfellow - 2014 - Cited by 4339 - Related articles Jun 10, 2014 - Submission history. From: Ian Goodfellow [view email] [v1] Tue, 10 Jun 2014 18:58:17 GMT (1257kb,D). Which authors of this paper are ...

Generative Adversarial Networks https://arxiv.org > stat 🔻

http://torch.ch/blog/2015/11/13/gan.html by IJ Goodfellow - 2014 - Cited by 4339 - Related articles Jun 10, 2014 - Submission history. From: Ian Goodfellow [view email] [v1] Tue, 10 Jun 2014 18:58:17 GMT (1257kb,D). Which authors of this paper are ...

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras **NVIDIA**

Timo Aila **NVIDIA**

Samuli Laine **NVIDIA**

Jaakko Lehtinen NVIDIA Aalto University

https://youtu.be/G06dEcZ-QTg

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras **NVIDIA**

Timo Aila **NVIDIA**

Samuli Laine **NVIDIA**

Jaakko Lehtinen NVIDIA Aalto University

https://youtu.be/G06dEcZ-QTg

Generative Models

Generative models approximate a data distribution directly. They can map samples from one distribution (noise or input data) to realistic samples from an output distribution of interest.

noise sample

generated receptor & ligand grid

Autoencoding

Encoder

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Hirzel[†], Ryan P. Adams^{∇I}, and Alán Aspuru-Guzik^{*‡⊥} (1)

http://people.eecs.berkeley.edu/~pathak/context_encoder/

Context Encoding

receptor grid

Computational and Systems Biology

Context Encoding

generated ligand grid

Receptor-Conditional Ligand-Variational Model

Receptor-Conditional Ligand-Variational Model

Receptor-Conditional Ligand-Variational Model

Model Architecture

 $n_{evels} = 3$ $conv_per_level = 3$ $n_{filters} = 32$ width_factor = 2 $n_latent = 1024$

ligand input density 19 x 24 x 24 x 24	3 convolutions 32 x 24 x 24 x 24	average pooling 32 x 12 x 12 x 12	3 convolutions 64 x 12 x 12 x 12	

Computational and Systems Biology

Atom Fitting $a^* = \arg\min ||d - D(a)||_2^2 + \lambda E(a)$ a

Atom Fitting $a^* = \arg\min ||d - D(a)||_2^2 + \lambda E(a)$ a

Conditioning on the Receptor

Conditioning on the Receptor

Iterpolating

Two atom toy system

Iterpolating

Two atom toy system

LALRNN Removing the third dimension

Chomsky Hierarchy

http://www.cs.appstate.edu/~dap/classes/2490/chapter11print.html

Turing machines that might loop

Turing machines that always accept or reject

Turing machines that use only as much tape as the input takes

Nondeterministic pushdown automata

Deterministic pushdown automata

Finite automata

An Introduction to **FORMAL LANGUAGES** and AUTOMATA

Balanced Parentheses $S \rightarrow \varepsilon$ $S \rightarrow (S)$ $S \rightarrow SS$

((())))()(())() () () () ()

Grammars

- Palindromes
 - $S \rightarrow \varepsilon$ $S \rightarrow aSa$ $S \rightarrow bSb$

aa babbab abbaabba Arithmetic

- E ::= id
 - num + E E * E E
 - E
 - 3 * 5 + 4 (3 + 4) * 5

University of Pittsburgh

Section	Formal Grammar						
	ATOMS						
3.1	atom ::= bracket_atom aliphatic_organic aromatic_organic '*'						
	ORGANIC SUBSET ATOMS						
3.1.5	aliphatic organic ::= $ B' C' N' O' S' P' F' C ' Br' I'$						
3.5	aromatic organic ::= 'b' 'c' 'n' 'o' 's' 'n'						
5.5	$\frac{1}{ppacket atoms} = \frac{p + c + n + o + s + p}{ppacket atoms}$						
211	bracket atom u = "" is atoma? sumbal shira!? heavint? sharga? slass? ""						
3.1.1	bracket_atom ::= [isotope? symbol chiral? ncount? charge? class?]						
3.1.1	symbol := element_symbols aromatic_symbols '*'						
3.1.4	isotope ::= NUMBER						
3.1.1	element_symbols ::=						
	'H' 'He'						
	'Li' 'Be' 'B' 'C' 'N' 'O' 'F' 'Ne'						
	'Na' 'Mg' 'Al' 'Si' 'P' 'S' 'Cl' 'Ar'						
	'K' 'Ca' 'Sc' 'Ti' 'V' 'Cr' 'Mn' 'Fe' 'Co' 'Ni' 'Cu' 'Zn' 'Ga' 'Ge' 'As' 'Se' 'Br' 'Kr'						
	'Rb' 'Sr' 'Y' 'Zr' 'Nb' 'Mo' 'Tc' 'Ru' 'Rh' 'Pd' 'Ag' 'Cd' 'In' 'Sn' 'Sb' 'Te' 'I' 'Xe'						
	'Cs' 'Ba' 'Hf' 'Ta' 'W' 'Re' 'Os' 'Ir' 'Pt' 'Au' 'Hg' 'Tl' 'Pb' 'Bi' 'Po' 'At' 'Rn'						
	'Fr' 'Ra' 'Rf' 'Db' 'Sg' 'Bh' 'Hs' 'Mt' 'Ds' 'Rg'						
	l'La'l'Ce'l'Pr'l'Nd'l'Pm'l'Sm'l'Eu'l'Gd'l'Tb'l'Dv'l'Ho'l'Er'l'Tm'l'Yb'l'Lu'						
	l'Ac'l'Th'l'Pa'l'U' l'Np'l'Pu'l'Am'l'Cm'l'Bk'l'Cf'l'Es'l'Em'l'Md'l'No'l'Lr'						
3.5	aromatic symbols $:= c' n' c' n' s' s' s' as'$						
5.5							
3.0	chiral ::= '@'						
5.5							
	.@IBT. .@IB5. .@IB3. .@IB59. .@IB30.						
	'@OH1' '@OH2' '@OH3' '@OH29' '@OH30'						
	HYDROGENS						
3.1.2	hcount ::= 'H'						
	CHARGE						
3.1.3	charge ::= '-'						
	'-' DIGIT						
	'+'						
	'+' DIGIT						
	'' *deprecated*						
	'++' *deprecated*						
	ATOM CLASS						
317	class ::= ':' NUMBER						
5.1.7							
22202	bonds And CHAINS						
3.2, 3.9.3							
3.4							
3.3	branched_atom ::= atom ringbond* branch*						
	branch ::= '(' chain ')'						
	'(' bond chain ')'						
	'(' dot chain ')'						
	chain ::= branched_atom						
	chain branched_atom						
	chain bond branched_atom						
	chain dot branched_atom						
3.7	dot ::= '.'						
	SMILES STRINGS						
3 10	smiles "= chain terminator						
5.10	terminator : SDACE TAR LINESEED CADDIACE DETURN END OF STRING						

SMILES

clcccclN

Push Down Automata

Balanced Parentheses

If input is) and (is on stack top, then (is popped and nothing is pushed to stack.

If input is (, what's on stack top doesn't matter and a (is pushed to stack.

 $|\varepsilon|$

Bottom Up Parsing

A PDA can be implemented with a parse table

	action			goto	
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g 5	g2
5			r1		

while(true) s = state on top of stack a = current input token shift if(action[s][a] == sN)push N a = next input token reduce else if (action[s][a] == rR)remove rhs of rule R from stack X = lhs of rule RN = state on top of stack push goto[N][X] accept :-) else if(action[s][a] == a) return success error else return failure

The NN Part

Implement every state as its own neural network that calculates a function of the input in the context of the parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Reduce State *n* stack states state (pushed)

The NN Part

Implement every state as its own neural network that calculates a function of the input in the context of the parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Shift State

Reduce State

U \mathbf{G} G A G G G

GGGAGAAUUGUCCC ((((...)))))

clcccclN

Does it work???

	state		()	S	
$S \rightarrow$	0	s6	s1		g5	
0 7.	1	s6	s1	s7	g4	
$S \rightarrow ()$	2	s6	s1	s11	g3	
\mathcal{O} $()$	3	s10	s2	s9		
$S \rightarrow (S)$	4	s10	s2	s8		
U (U)	5	s10	s2			
$S \rightarrow S(S)$	6	Redu				
U / U(U)	7	Reduce $S \rightarrow ()$				
$S \rightarrow S$	8	Reduce $S \rightarrow (S)$				
0 70.	9	Reduce $S \rightarrow S(S)$				
$S \rightarrow S()$	10	Reduce $S \rightarrow S$.				
\mathcal{O}	11	Reduce $S \rightarrow S()$				
	12	END				

GRU Encoder

Acknowledgements

Matt Ragoza

Jocelyn Sunseri Paul Francoeur

Department of Computational and Systems Biology

National Institute of **General Medical Sciences** R01GM108340

G github.com/gnina

http://bits.csb.pitt.edu

@david_koes

