
 Deep Learning for Computational 
Drug Discovery

David Koes

Intelligent Systems Program 
AI Forum 

October 19, 2018

@david_koes



University of Pittsburgh Computational and Systems Biology

 2

PHASE I PHASE II PHASE III PHASE IV

IN
D 

SU
BM

IT
TE

D

ND
A/

BL
A 

SU
BM

IT
TE

D

FD
A 

AP
PR

OV
AL

TENS HUNDREDS THOUSANDS
NUMBER OF VOLUNTEERS

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

POTENTIAL NEW MEDICINES

1 FDA-
APPROVED
MEDICINE

BASIC
RESEARCH

DRUG
DISCOVERY CLINICAL TRIALS FDA 

REVIEW
POST-APPROVAL

RESEARCH &
MONITORING

PRE-
CLINICAL

Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)

$2.6 
BILLION

http://phrma.org


University of Pittsburgh Computational and Systems Biology

 2

PHASE I PHASE II PHASE III PHASE IV

IN
D 

SU
BM

IT
TE

D

ND
A/

BL
A 

SU
BM

IT
TE

D

FD
A 

AP
PR

OV
AL

TENS HUNDREDS THOUSANDS
NUMBER OF VOLUNTEERS

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

POTENTIAL NEW MEDICINES

1 FDA-
APPROVED
MEDICINE

BASIC
RESEARCH

DRUG
DISCOVERY CLINICAL TRIALS FDA 

REVIEW
POST-APPROVAL

RESEARCH &
MONITORING

PRE-
CLINICAL

Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)

$2.6 
BILLIONIf you stop failing so often you massively 

reduce the cost of drug development. 
— Sir Andrew Witty 

CEO, GlaxoSmithKline

http://phrma.org


University of Pittsburgh Computational and Systems Biology

 2

PHASE I PHASE II PHASE III PHASE IV

IN
D 

SU
BM

IT
TE

D

ND
A/

BL
A 

SU
BM

IT
TE

D

FD
A 

AP
PR

OV
AL

TENS HUNDREDS THOUSANDS
NUMBER OF VOLUNTEERS

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

POTENTIAL NEW MEDICINES

1 FDA-
APPROVED
MEDICINE

BASIC
RESEARCH

DRUG
DISCOVERY CLINICAL TRIALS FDA 

REVIEW
POST-APPROVAL

RESEARCH &
MONITORING

PRE-
CLINICAL

Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)

$2.6 
BILLIONIf you stop failing so often you massively 

reduce the cost of drug development. 
— Sir Andrew Witty 

CEO, GlaxoSmithKline

http://phrma.org


University of Pittsburgh Computational and Systems Biology

 3

1. Does the compound do what you want it to? 
2. Does the compound not do what you don’t want it to? 
3. Is what you want it to do the right thing?
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Drug Discovery
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Structure Based Drug Design

Virtual Screening Lead Optimization

Pose Prediction Binding Discrimination Affinity Prediction
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Structure Based Drug Design

Virtual Screening Lead Optimization

Pose Prediction Binding Discrimination Affinity Prediction
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O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461
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Protein-Ligand Scoring
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, 
a feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.



University of Pittsburgh Computational and Systems Biology

Deep Learning

 11



University of Pittsburgh Computational and Systems Biology

Deep Learning

 11



University of Pittsburgh Computational and Systems Biology

Deep Learning

 11



University of Pittsburgh Computational and Systems Biology

Convolutional Neural Networks
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Convolutional Filters
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(R,G,B) pixel
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Protein-Ligand Representation
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Why Grids?
Pros 

• clear spatial relationships 

• amazingly parallel 

• easy to interpret

 15

Cons 

• coordinate frame dependent 

• pairwise interactions not explicit

≠
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Data Augmentation
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Data Augmentation
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Optimized Models
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Pose Results
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Pose Results
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Affinity Results
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Affinity Results
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But what is it learning?

 21

AliphaticCarbon

NitrogenDonor OxygenDonorAcceptor

OxygenAcceptor

-                                     +



University of Pittsburgh Computational and Systems Biology

2x
2x

2 
M

ax
 P

oo
lin

g

2x
2x

2 
M

ax
 P

oo
lin

g

2x
2x

2 
M

ax
 P

oo
lin

g

3x
3x

3 
C

on
vo

lu
tio

n

48
x4

8x
48

x3
5

24
x2

4x
24

x3
5

24
x2

4x
24

x3
2

12
x1

2x
12

x3
2

12
x1

2x
12

x6
4

6x
6x

6x
64

6x
6x

6x
12

8

Fu
lly

 C
on

ne
ct

ed
Fu

lly
 C

on
ne

ct
ed

Affinity

Pose
Score

So
ft

m
ax

+
Lo

gi
st

ic
 L

os
s

Ps
eu

do
-H

ub
er

 L
os

s

R
ec

tifi
ed

 L
in

ea
r 

U
ni

t

3x
3x

3 
C

on
vo

lu
tio

n
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

3x
3x

3 
C

on
vo

lu
tio

n
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

Beyond Scoring
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Beyond Scoring
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2Q89

More Oxygen Here

Less Oxygen Here
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Beyond Scoring
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2Q89

More Oxygen Here

Less Oxygen Here
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Minimizing Low RMSD Poses

better worse
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Iterative Refinement
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Iterative Refinement
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Iterative Refinement
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Generative Modeling

 28
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Discriminative Model

 29

Features X Prediction y
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Generative Model

 30

Features X
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Generative Model

 30

Features X
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Generative Model

 30

Features X

y?
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Generative Adversarial Networks

 31

Generator

Discriminator

True Examples
Loss

Is this a 
real dog 
picture?
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Generative Adversarial Networks
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Generator
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real dog 
picture?
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Generative Adversarial Networks

 32



University of Pittsburgh Computational and Systems Biology

Generative Adversarial Networks

 32

http://torch.ch/blog/2015/11/13/gan.html



https://youtu.be/G06dEcZ-QTg

https://www.youtube.com/watch?v=G06dEcZ-QTg


https://youtu.be/G06dEcZ-QTg

https://www.youtube.com/watch?v=G06dEcZ-QTg
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Generative Models

 34
noise sample generated receptor & ligand grid

Generative models approximate a data distribution directly. They can 
map samples from one distribution (noise or input data) to realistic 
samples from an output distribution of interest.



University of Pittsburgh Computational and Systems Biology

Autoencoding

 35

Latent 
Space

GeneratorEncoder L2 Loss
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Autoencoding
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Latent 
Space

GeneratorEncoder L2 Loss



University of Pittsburgh Computational and Systems Biology

Context Encoding

 36http://people.eecs.berkeley.edu/~pathak/context_encoder/



University of Pittsburgh Computational and Systems Biology

Context Encoding
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receptor grid generated ligand grid
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Receptor-Conditional Ligand-Variational Model

 38

L2 loss

GAN loss
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Receptor-Conditional Ligand-Variational Model
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L2 loss

GAN loss
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Receptor-Conditional Ligand-Variational Model

 40

GAN loss

Discriminator
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Model Architecture
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n_levels = 3 
conv_per_level = 3 
n_filters = 32 
width_factor = 2 
n_latent = 1024 
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Autoencoding Examples

 422AVO
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Autoencoding Examples

 422AVO
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Autoencoding Examples

 434PYX
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Autoencoding Examples
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Autoencoding Examples

 441LBF
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Autoencoding Examples
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Atom Fitting
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Atom Fitting

 45
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Conditioning on the Receptor

 46



University of Pittsburgh Computational and Systems Biology

Conditioning on the Receptor
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Iterpolating
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ligandprotein

Two atom toy system

2Å
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Iterpolating
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ligandprotein

Two atom toy system

2Å
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LALRNN 
Removing the third dimension

 48
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Chomsky Hierarchy
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http://www.cs.appstate.edu/~dap/classes/2490/chapter11print.html
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Grammars
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  S → 𝜀 
  S → (S) 
  S → SS 

  S → 𝜀 
  S → aSa 
  S → bSb 

PalindromesBalanced 
Parentheses E ::= id

    | num
    | E + E
    | E * E
    | ( E )

Arithmetic 

()
((()))()(())
()()()()()

aa
babbab
abbaabba

3 + 4 * 5
(3 + 4) * 5
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SMILES

 51

c1ccccc1N
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Push Down Automata

 52

Balanced Parentheses

If input is (, what’s on 
stack top doesn’t matter 
and a ( is pushed to stack.

If input is ) and ( is on 
stack top, then ( is 
popped and nothing 
is pushed to stack.
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Bottom Up Parsing

 53

action goto
state ident + $ E T

0 s3 g1 g2
1 a
2 s4 r2
3 r3 r3
4 s3 g5 g2
5 r1

 S → E$ 

 E → T + E 

 E → T 

 T → identifier

while(true) 
 s = state on top of stack 
 a = current input token 
 if(action[s][a] == sN)   shift 
  push N 
  a = next input token 
 else if(action[s][a] == rR)  reduce 
  remove rhs of rule R from stack 
  X = lhs of rule R 
  N = state on top of stack 
  push goto[N][X] 
 else if(action[s][a] == a)  accept :-) 
  return success 
 else       error 
  return failurex + y$

states != rules

A PDA can be implemented with a parse table
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The NN Part

 54

Implement every state as its own neural network that calculates a function of the input in the context of the 
parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Encoder

input  
character

Shift State
stack 
top

state (pushed)

Reduce State

n stack states

state (pushed)
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The NN Part

 55

Implement every state as its own neural network that calculates a function of the input in the context of the 
parse (encoder) or outputs a syntactically correct string according to the rules of the grammar (generator)

Generator

Shift State

stack top

state 
(pushed)

Reduce State

n stack states

state (pushed)output 
character

argmax lookup next 
state

???
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Does it work???

 56

c1ccccc1Nc1ccccc1N
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LALRNN vs GRU

 57

GRU
Encoder

La
te

nt
 S

pa
ce

 
(1

00
) GRU/LALRNN

Decoder
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