
Data	Compression	of	Molecular	Dynamics	Trajectories
Haiyang	Huang Prof.	David	Koes

First	Experiences	in	Research,	Dietrich	School	of	Arts	&	Sciences,	University	of	
Pittsburgh

Introduction Results

Attempts	of	Improvement

Methods

Acknowledgements

Molecular	dynamics	simulation	is	a	valuable	tool	for	
understanding	the	dynamics	and	function	of	proteins,	nucleic	
acids,	and	small	molecules.	As	computational	power	increases,	
our	ability	to	simulate	longer	and	longer	time	scales	has	
correspondingly	increased,	and	the	resulting	trajectory	files	
are	gigabytes	to	terabytes	in	size.	However,	no	application-
specific	compression	algorithms	have	been	created	for	these	
files	and	general-purpose	compression	tools	(e.g.	gzip)	
perform	poorly.	This	project	focuses	on	creating	a	compression	
and	decompression	algorithm	for	the	molecular	dynamics	(MD)	
trajectories,	which	simulate	the	motions	of	biomolecules	at	an	
atomistic	resolution.	

Results	shown	that	our	original	algorithm,	has	a	compression	rate	near	
to	one	eighth	with	an	average	position	difference	less	than	0.1	Angstrom	
and	the	maximum	difference	less	than	0.15	Angstrom	for	an	ordinary	
protein	MD	trajectory.	Rounding	of	the	coordinates	is	the	only	resource	of	
this	difference.	This	distance	is	relatively	small,	compared	to	the	size	of	the	
protein	we	studied	in	the	MD	trajectory.	

Attempts	to	make	improvement	of	our	methods	are	in	two	directions:	
l Changing	the	rate	of	loss	in	the	video	compressing	process	to	have	a	

smaller	file	and	an	acceptable	loss	of	data	accuracy;	
l Using	blocking,	sorting,	or	switching	the	origin	to	rearrange	the	pixel	to	

have	a	smaller	file.
To	improve	our	methods,	we	changed	the	algorithm	and	make	some	

tests	to	our	sample	MD	file.	Our	approach	is	specifically	designed	to	enhance	online	
streaming	of	files:	compression	increases	the	streamed	frame	
rate	and	the	use	of	the	built-in	video	codec	enables	fast	
hardware-accelerated	decompression.	First	we	record	all	the	
coordinates	of	the	atoms	at	different	time	from	the	MD	
trajectories,	and	find	the	minimum	and	range	of	coordinates	
on	three	axes.	Then	we	tried	to	calculate	their	relative	
coordinates	using	the	minimum	and	range,	and	round	these	
relative	coordinates	into	a	number	of	8	bits.	Because	we	have	
three	different	axes,	coordinate	of	a	point	at	a	certain	time	can	
also	be	interpreted	as	a	24-bit	color	depth	pixel.	Using	Python	
Imaging	Library	(PIL)	and	video	streaming	software	FFmpeg,	
we	transfer	all	the	coordinates	at	a	certain	time	into	an	image,	
and	consists	a	video	using	images	from	different	time	losslessly.	
Blocking	method	is	used	in	allocating	the	location	of	a	pixel	in	
the	image.	We	can	easily	compress	and	decompress	this	video	
using	the	additional	information,	which	is	the	minimum	and	
the	range	of	coordinates	on	the	three	axes,	that	is	saved	in	a	
small	text	file.

This	work	was	supported	by	the	National	Institute	of	Health	
[R01GM108340].
The	content	is	solely	the	responsibility	of	the	authors	and	does	not	
necessarily	represent	the	official	views	of	the	National	Institutes	of	
Health.

0
500
1000
1500
2000
2500
3000

0 1 2 3 4 5 6 7 8 9 10

Fi
le
	S
ize

	(K
B)

Rate	of	Loss	in	the	Video	Compressing	Process	(Percent)

Size	of	the	File	versus	the	Rate	of	Loss	in	Video	
Compressing	Process

2073 2188
2406

2137 2094
1876

2547 2641 2542

0
500
1000
1500
2000
2500
3000

Fi
le
	S
ize

	(K
B)

Types	of	Methods	used

Size	of	the	File	versus	Types	of	Methods	Used	in	
the	Algorithm

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Di
st
an
ce
	D
iff
er
en
ce
	B
et
w
ee
n	

th
e	
De

co
m
pr
es
se
d	
M
D	
an
d	

th
e	
O
rig

in
al
	M

D	
(A
ng
st
ro
m
)

Rate	of	Loss	in	the	Video	Compressing	Process	(Percent)

Position	Difference	versus	Rate	of	Loss	in	Video	
Compressing	Process

Average	Difference
Maximum	Difference

Attempts	of	Improvement

As	shown	in	the	first	chart,	increasing	the	rate	of	loss	in	video	
compressing	process	won’t	make	a	big	increase	on	the	average	distance	
between	the	compressed	data	and	the	original	data.	But	the	maximum	
position	distance	will	increase	greatly	if	the	video	compressing	method	is	
not	lossless.

As	shown	in	the	second	chart,	increasing	the	rate	of	loss	in	video	
compressing	method	will	increase	the	file	size	at	first.	After	the	loss	rate	is	
higher	than	5	percent,	the	file	size	become	smaller	than	the	original	one.

Because	the	maximum	difference	and	the	average	difference	become	too	
high	after	the	loss	rate	is	higher	than	5	percent,	we	believe	that	it	is	useless	to	
do	so.

As	shown	in	the	third	chart,	different	blocking	methods	will	slightly	
increase	the	file	size.	If	we	truncated	the	last	columns	of	block	to	make	the	
area	wasted	smaller,	the	file	size	is	still	bigger	than	the	original	one	by	20	KB.	
However,	if	we	block	the	8x8	blocks	again	in	4x4	bigger	blocks,	the	file	size	will	
be	9.5%	smaller	than	the	original	one.	We	suppose	that	this	is	because	width	
and	height	of	the	video	is	a	multiple	of	16,	so	that	the	compression	rate	of	the	
video	codec	can	be	higher.

Sorting	doesn’t	make	improvement	to	the	file	sizes.	In	fact,	all	the	sorting	
methods	will	create	an	about	20%	bigger	file	size,	compared	to	the	file	size	we	
got	without	sorting.	Switching	the	origin	also	increase	the	file	size	by	20%.

The	idea	of	BlockingMain	idea	of	the	Project


