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What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance
recognized in an official pharmacopoeia or formulary (2) : a
substance intended for use in the diagnosis, cure, mitigation,
treatment, or prevention of disease (3) : a substance other than
food intended to affect the structure or function of the body
(4) : a substance intended for use as a component of a medicine
but not a device or a component, part, or accessory of a device

http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the
structure/function of macromolecules
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THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS
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Source: Pharmaceutical Research and Manufacturers of America (http://phrma.org)
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1. Does the compound do what you want it to?

2. Does the compound not do what you don’t
want it to?

3. Is what you want it to do the right thing”
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Drug Discovery
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Computational Drug Discovery

Virtual Modeling
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder

- QSAR

- pharmacophore
Receptor Based

- dock and score
- simulation
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ADMET

Absorption
Distribution
Metabolism
Excretion
Toxicity

Computational and Systems Biology

Will this be a usable drug?

Screening for ADMET:
Cytochrome P450 interaction
Lipinksi’s Rule of Five

QSPR: Quantitative Structure
Property Relationship
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder

- QSAR

- pharmacophore

Receptor Based

- dock and score
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Ligand Based: Similarity
Fingerprint Methods

- map molecules to a descriptor space:

1D: molecule weight, #h-bonds, etc.
2D: paths, bond distances between atom-pairs

- similarity is “distance” between descriptors
- for bit vectors, Tanimoto distance used

A(B
AUB

T(A,B) =

11
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Topological Fingerprints

Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)

O=C-N-C

_ 0=N-O
O=C-0, \ | N-c-c-c-c-c=0

oy

C-C=C-C
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Topological Fingerprints
ECFP4

- all substructures with diameter 4 around every atom

13
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Ligand Based: Similarity
Superposition Methods

- compute “overlap” between molecules

- consider shape, electrostatics, pharmacophores

http://www.cresset-group.com/
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships

Properties

Calculated Residual

Log ECso

H 1.07 0 0.79 0.28
(Vp)
o) Cl 0.09 0.71 0.21 -0.12
c
S NO. 0.66 -0.28 1.02 -0.36
@)
% CN 1.42 -0.57 1.26 0.16
e CeHs -0.62 1.96 -0.81 0.19
N(CHs), 0.64 0.18 0.65 -0.01
I -0.46 1.12 -0.12 -0.34

Biological Activity = Learned lnear function of properties

3D-QSAR: includes geometric/structural properties

Computational and Systems Biology

15
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Ligand Based: QSAR

Quantitative Structure/Activity Relationships
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Ligand/Receptor Based: Pharmacophore

Pharmacophore:

JUPAC: The ensemble of steric and electronic features that is
necessary to ensure the optimal supra-molecular
interactions with a specific biological target structure and to
trigger (or to block) its biological response.

Common Features:
aromatic ring
hydrophobic area
positive ionizable
negative ionizable
hydrogen bond donor
hydrogen bond acceptor
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Pharmacophore Features
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Charge-Charge

IFo.ol =1Fqol= k 2
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Charge-Charge

Salt Bridge

Inhibitor of the influenza virus neuraminidase (antiviral agent)
20
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Hydrogen Bond

21
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Hydrogen Bond

Distance:

D-A: 2.5A — 3.5A (4.0A?)
H-A: 1.5A — 2.5A

Angle:

Depends on context

Turkey Ovomucoid Inhibitor

22
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Hydrophobic
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MDM?2 (over expressed in >60% of cancers) down-requlates p53 (guardian of the genome) 24
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Aromatic
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Aromatic

Rings offset
Interplanar distance: 3.3-3.8A
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Kinds of Virtual Screening

ADMET
Ligand Based

- similarity to known binder
- QSAR

- pharmacophore

Receptor Based

- dock and score

27
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Pharmacophores Aren’'t Enough
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Docking

Determine the conformation and pose of a
ligand at a docking site

Challenge is to find
conformation and pose with
the best score

29
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Two Phase Docking
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Scoring Goals
Affinity Prediction

-how well does it bind?

Inactive/Active Discrimination
-does it bind?

Pose Prediction

-how does it bind?

Approximations:
Speed Rigid or semi-rigid receptor
Implicit water model

31
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Scoring Types
Force-field based

inter- and intra- molecular forces
van der Waals, electrostatic, torsional

Empirical
parameterized function is fit to binding energy data

Knowledge based

scoring function based on data, not physical principles

Consensus

combine multiple scoring functions

32
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Force Field: Dock 4.0 Coulomb’s Law
g: partial charges
D: dielectrict constant
lig rec
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Empirical: AutoDock Vina

Weight Term
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Knowledge Based: RF-Score
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Can we do better?

Accurate pose prediction, binding

discrimination, and affinity prediction without
sacrificing performance?

Key ldea: Leverage "big data”
231,655,275 bioactivities in PubChem

125 526 structures in the PDB
16,179 annotated complexes in PDBbind
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Machine Learning

Features X — — y Prediction
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Neural Networks
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Computational and Systems Biology

The universal approximation theorem
states that, under reasonable assumptions, a
feedforward neural network with a finite
number of nodes can approximate any
continuous function to within a given error
over a bounded input domain.
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Deep Learning

oo :9: AlphaGo <
‘avexeNere

Ak - a3 sruser poogeaihs
<10 Bk 3 darngioe Lo pEn e Rl
JEmm AL SYSTEMSGO

W/ |

r il . .

VV’/ .:;’ . akrr ) ! vl\_\":::""f:‘ = -'S;l"mn': .

G ) I ed () - S
’«‘\‘o' e “=

AL

e:\?’:; é: WA
VX A ed
5{3?&%’ ,2?“?4: — at=1§' and —aL — 5t
‘m X A ] k /4 o' J
. j
% _ ALV
IR\

AT YAA U/ /o ‘
AT




University of Pittsburgh

Computational and Systems Biology

Image Recognition
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Convolutional Neural Networks
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CNNs for Protein-Ligand Scoring
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y A , ,\ S
E ,V‘ » Binding
(_\'\j

Discrimination

Affinity Prediction




University of Pittsburgh

Computational and Systems Biology

Protein-Ligand Representation
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The only parameters for
this representation are the
choice of grid resolution,
atom density, and atom
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Model

Affinity

Pose
Score
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Results

15
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Affinity Prediction
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Vina (R=0.55, RMSE=1.86)

Experiment

15
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Pose Prediction

TPR

0.2 —— CNN (AUC=0.89)
— \/Iina (AUC=0.61)
0.0
00 02 04 06 08 1.0

FPR

Trained on PDBbind refined; tested on CSAR @
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Beyond Scoring
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Beyond Scoring
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Key Concepts

Ligand-Based Virtual Screening
ldentifying new active compounds based on similarity to known active
compounds; fingerprint is a bit vector representation of a molecule

Pharmacophore

A spatial arrangement of molecular features essential for biological
activity - hydrogen bonding, hydrophobic, charged, etc.

Docking
Predict the position, pose and affinity of a molecule using the receptor
structure

Scoring
force field ... empirical ... knowledge based

51
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