

# **Computational Drug Discovery**

#### David Ryan Koes 7/9/2018

http://bits.csb.pitt.edu

#### What is a drug?

According to the Food, Drug, and Cosmetic Act (1) : a substance recognized in an official pharmacopoeia or formulary (2) : a substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease (3) : a substance other than food **intended to affect the structure or function** of the body (4) : a substance intended for use as a component of a medicine but not a device or a component, part, or accessory of a device http://www.merriam-webster.com/dictionary/drug

A small molecule intended to affect the structure/function of macromolecules



#### THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS



- 1. Does the compound do what you want it to?
- Does the compound **not** do what you **don't** want it to?
- 3. Is what you want it to do the right thing?

### **Drug Discovery**



#### **Computational Drug Discovery**



### **Kinds of Virtual Screening**

#### ADMET

#### Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

#### **Receptor Based**

- dock and score
- simulation

#### ADMET

Absorption Distribution Metabolism Excretion Toxicity

# Will this be a usable drug?

#### **Screening for ADMET:**

Cytochrome P450 interaction Lipinksi's Rule of Five QSPR: Quantitative Structure Property Relationship

# Kinds of Virtual Screening

#### ADMET

#### **Ligand Based**

- similarity to known binder
- QSAR
- pharmacophore
- **Receptor Based** 
  - dock and score



### Ligand Based: Similarity

#### **Fingerprint Methods**

- map molecules to a descriptor space:

1D: molecule weight, #h-bonds, etc. 2D: paths, bond distances between atom-pairs



- similarity is "distance" between descriptors
- for bit vectors, Tanimoto distance used

$$T(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

### **Topological Fingerprints**

#### Daylight/FP2 Fingerprints

- all paths up to 7 bonds long
- each path corresponds to bit position (hashing)
- fast similarity checking (Tanimoto)



# **Topological Fingerprints**

#### ECFP4

- all substructures with diameter 4 around every atom



#### Ligand Based: Similarity

#### **Superposition Methods**

- compute "overlap" between molecules
- consider shape, electrostatics, pharmacophores



### Ligand Based: QSAR

#### Quantitative Structure/Activity Relationships

|   | Cmpd<br>Number | Cmpd<br>Name | X                                | Log EC₅₀ | П     | Calculated<br>Log EC₅₀ | Residual |
|---|----------------|--------------|----------------------------------|----------|-------|------------------------|----------|
| , | 1              | 6a           | Н                                | 1.07     | 0     | 0.79                   | 0.28     |
|   | 2              | 6b           | Cl                               | 0.09     | 0.71  | 0.21                   | -0.12    |
| 5 | 3              | 6d           | NO <sub>2</sub>                  | 0.66     | -0.28 | 1.02                   | -0.36    |
| 2 | 4              | бе           | CN                               | 1.42     | -0.57 | 1.26                   | 0.16     |
|   | 5              | 6f           | $C_6H_5$                         | -0.62    | 1.96  | -0.81                  | 0.19     |
|   | 6              | 6g           | N(CH <sub>3</sub> ) <sub>2</sub> | 0.64     | 0.18  | 0.65                   | -0.01    |
|   | 7              | 6h           | Ι                                | -0.46    | 1.12  | -0.12                  | -0.34    |

#### Properties

Biological Activity = Learned linear function of properties 3D-QSAR: includes geometric/structural properties



#### Ligand/Receptor Based: Pharmacophore

#### Pharmacophore:

IUPAC: The ensemble of steric and electronic features that is necessary to ensure the optimal supra-molecular interactions with a specific biological target structure and to trigger (or to block) its biological response.

#### **Common Features:**

aromatic ring hydrophobic area positive ionizable negative ionizable hydrogen bond donor hydrogen bond acceptor



#### **Pharmacophore Features**



### Charge-Charge







### Charge-Charge



Inhibitor of the influenza virus neuraminidase (antiviral agent)

### Hydrogen Bond



#### Hydrogen Bond



Distance: D-A:  $2.5\text{\AA} - 3.5\text{\AA} (4.0\text{\AA}?)$ H-A:  $1.5\text{\AA} - 2.5\text{\AA}$ Angle: Depends on context



Turkey Ovomucoid Inhibitor

### Hydrophobic



### Hydrophobic



MDM2 (over expressed in >50% of cancers) down-regulates p53 (guardian of the genome)

#### Aromatic



http://www.chem.ucalgary.ca/courses/351/Carey5th/Ch11/benzene-mo.jpg

#### Aromatic



#### Rings offset Interplanar distance: 3.3-3.8Å



Human liver glycogen phosphorylase a complexed with caffeine

### **Kinds of Virtual Screening**

#### ADMET

#### Ligand Based

- similarity to known binder
- QSAR
- pharmacophore

#### **Receptor Based**

- dock and score



#### Pharmacophores Aren't Enough



.2µM

#### 50µM



### Docking

# Determine the **conformation** and **pose** of a ligand at a docking site

#### Challenge is to find conformation and pose with the best **score**



#### **Two Phase Docking**

1. Global Pose Estimation





### **Scoring Goals**

### Affinity Prediction

-how well does it bind?

#### Inactive/Active Discrimination

-does it bind?

#### **Pose Prediction**

-how does it bind?

## Speed

#### **Approximations:**

Rigid or semi-rigid receptor Implicit water model

### **Scoring Types**

#### Force-field based

inter- and intra- molecular forces van der Waals, electrostatic, torsional

Empirical

parameterized function is fit to binding energy data

#### Knowledge based

scoring function based on data, not physical principles

#### Consensus

combine multiple scoring functions

#### **Force Field: Dock 4.0**

Coulomb's Law q: partial charges D: dielectrict constant



#### **Empirical: AutoDock Vina**



| Weight   | Term               |  |  |
|----------|--------------------|--|--|
| -0.0356  | gauss <sub>1</sub> |  |  |
| -0.00516 | gauss <sub>2</sub> |  |  |
| 0.840    | Repulsion          |  |  |
| -0.0351  | Hydrophobic        |  |  |
| -0.587   | Hydrogen bonding   |  |  |
| 0.0585   | N <sub>rot</sub>   |  |  |



#### **Knowledge Based: RF-Score**

#### Pairwise Distance Counts (<12Å)

#### **Protein**



Vol. 26 no. 0 2010, pages 1160-1175 ORIGINAL PAPER doi: 19.1093/biol-documete-s/54, 112

Structural bioinformatics

Advance Access sublection March 17, 2012

A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking

Pedro J. Ballester<sup>1, \*,\*</sup> and John B. O. Mitchel<sup>2,\*</sup>

Units/er Centre for Molecular Science Informatics, Department of Cremistry, University of Cembrogy, Level et al. Boad, Cembridge CB2 1EW and <sup>2</sup>Centre for Riemolecular Sciences, University of St Anonews, North Haugh, St Andrews KY18 9ST, UK Associate Editor: Burkhard Post



මාණ මා මා

aaabb



35

### Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

- **Key Idea:** Leverage "big data" 231,655,275 bioactivities in PubChem 125,526 structures in the PDB
  - 16,179 annotated complexes in PDBbind



# **Machine Learning**

# Features $X \rightarrow Model \rightarrow y$ Prediction

#### **Neural Networks**







#### **Neural Networks**





#### The universal approximation theorem

states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

## **Deep Learning**



#### Image Recognition



#### **Convolutional Neural Networks**



# **CNNs for Protein-Ligand Scoring**



#### **Protein-Ligand Representation**



(R,G,B) pixel  $\rightarrow$ (Carbon, Nitrogen, Oxygen,...) **voxe** The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

#### Model



#### Results

#### **Affinity Prediction**

**Pose Prediction** 



Trained on PDBbind refined; tested on CSAR 🤪

# **Beyond Scoring**



https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html



https://deepdreamgenerator.com/#gallery

# **Beyond Scoring**





# **Key Concepts**

Ligand-Based Virtual Screening

Identifying new active compounds based on similarity to known active compounds; fingerprint is a bit vector representation of a molecule

Pharmacophore

A spatial arrangement of molecular features essential for biological activity - hydrogen bonding, hydrophobic, charged, etc.

#### Docking

Predict the position, pose and affinity of a molecule using the receptor structure

Scoring force field ... empirical ... knowledge based

#### **University of Pittsburgh**

#### **Computational and Systems Biology**



#### http://pharmit.csb.pitt.edu