Generative models for structure-based drug design David Koes

Revolutionizing Chemistry with Artificial Intelligence American Chemical Society Boston, MA August 20, 2018

@david_koes

Machine Learning

Features X

Computational and Systems Biology

-----> Prediction y

Neural Networks

The **universal approximation theorem** states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

At last – a computer program that can beat a champion Go player MEE48

CERSERVITOR SONGBIRDS A LA CARTE Wagna' between a for of the for-sy labeled with the source of the source of the for-sy labeled with the source of the source of the for-sy labeled with the source of the s

FEEDFON ET NICE SAFEGUARD TRANSPARENCY

TORULAE SCIENCE WHEN GENES GOT 'SELFISH' Davidue's calling narolybrity years Miletia

STRUCT STRUCTURE WE SHOW TO

Discriminative Model

Features X -

Computational and Systems Biology

Generative Model

Generative Adversarial Networks

True Examples

Generator

Generative Adversarial Networks

Generative Adversarial Networks https://arxiv.org > stat 🔻

http://torch.ch/blog/2015/11/13/gan.html by IJ Goodfellow - 2014 - Cited by 4339 - Related articles Jun 10, 2014 - Submission history. From: Ian Goodfellow [view email] [v1] Tue, 10 Jun 2014 18:58:17 GMT (1257kb,D). Which authors of this paper are ...

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras **NVIDIA**

Timo Aila **NVIDIA**

Samuli Laine **NVIDIA**

Jaakko Lehtinen NVIDIA Aalto University

https://youtu.be/G06dEcZ-QTg

Generative models for structure-based drug design

AMERICAN CHEMICAL SOCIETY

ACS Chemistry for Life®

Structure Based Drug Design

Pose Prediction Binding Discrimination Affinity Prediction

Virtual Screening

Lead Optimization

Drug Discovery Funnel

http://pharmit.csb.pitt.edu

COMP 528: Structure-based searching of chemical space with Pharmit Thursday, Aug 23 9:20 AM Douglass, Westin Boston Waterfront

		Θ
	\$	5. :
ľ	ts	6
6	Mass	RBnds
	395	1 -
	330	0
	607	15
	314	0
	275	0
	351	0
	330	0
	300	1
	288	0
	272	0
	272	0
	272	0
	296	0
	378	1
	312	1
	375	3
	288	0
	607	15
3	35 hits	
	TC Nex	t
e	conds	
v	e	
	_	-

Drug Discovery Funnel

$$\mathrm{hydrophobic}(d) \;=\; \left\{egin{array}{cc} w_{\mathrm{hydrophobic}} & d \ 0 & d \ w_{\mathrm{hydrophobic}}(1.5-d) & o \end{array}
ight.$$

$$\mathrm{hbond}(d) \;=\; \left\{egin{array}{cc} w_\mathrm{hbond} & d < -0, \ 0 & d > 0 \ w_\mathrm{hbond}(-rac{10}{7}d) & otherwin \end{array}
ight.$$

Protein-Ligand Scoring

Computational and Systems Biology

Pose Prediction

Binding Discrimination

Affinity Prediction

Convolutional Neural Networks

Convolutional Filters

-1	-1	-1
0	0	0
1	1	1

-1	0	1	-1	-1	-1
-1	0	1	-1	8	-1
-1	0	1	-1	-1	-1

Protein-Ligand Representation

- (R,G,B) pixel \rightarrow
- (Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Cons

- coordinate frame dependent
- pairwise interactions not explicit

Why Grids?

Pros

- clear spatial relationships
- amazingly parallel
- easy to interpret

Pooling Max 2×2×2

| 2×| 2×| 2×32

Convolution 3×3×3

Rectified Linear Unit

| 2×| 2×| 2×64

Pooling Max 2×2×2

6×6×6×64

Convolution 3×3×3

Rectified Linear Unit

6×6×6×128

Fully Connected	Pseudo-Huber Loss
Fully Connected	Softmax+Logistic Loss

Pose Score

Model

Results

COMP 410: GNINA: Deep learning for molecular docking Monday, Aug 20 8:00 PM Exhibit Hall C, Boston Convention & Exhibition Center

COMP: Poster Session

Tuesday, Aug 21 6:00 PM Exhibit Hall B1, Boston Convention & Exhibition Center

data

48^3

label

 ∂L

 ∂w_{jk}^l

Beyond Scoring

$$\begin{array}{c} \underset{w^{l+1}}{\overset{mit}{}_{x}} \underset{w^{l+1}}{\overset{mit}{}_{x}} \underset{j}{\overset{mit}{}_{x}} \underset{j}{\overset{mit}{} \underset{j}{\overset{mit}{}_{x}} \underset{j}{\overset{mit}{}_{x}} \underset{j}{\overset{mit}{}_{x}} \underset{j}{\overset{mit}{} \underset{j$$

Deep Dreams

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Iterative Refinement

Generative Models

Generative models approximate a data distribution directly. They can map samples from one distribution (noise or input data) to realistic samples from an output distribution of interest.

noise sample

generated receptor & ligand grid

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Hirzel[†], Ryan P. Adams^{∇I}, and Alán Aspuru-Guzik^{*‡⊥} (1)

http://people.eecs.berkeley.edu/~pathak/context_encoder/

Context Encoding

receptor grid

Computational and Systems Biology

Context Encoding

generated ligand grid

Receptor-Conditional Ligand-Variational Model

Receptor-Conditional Ligand-Variational Model

Receptor-Conditional Ligand-Variational Model

University of Pittsburgh

Model Architecture

3.0 4.0

5.0

Model Architecture

 $n_{evels} = 3$ $conv_per_level = 3$ $n_{filters} = 32$ width_factor = 2 $n_latent = 1024$

receptor input density 16 x 24 x 24 x 24	3 convolutions 32 x 24 x 24 x 24	average pooling 32 x 12 x 12 x 12	3 convolutions 64 x 12 x 12 x 12	
				L
		\square		

average pooling 32 x 12 x 12 x 12

2

ligand input density 19 x 24 x 24 x 24

3 convolutions 32 x 24 x 24 x 24

2016 PDBbind refined set

3765 crystal structures Vina docking RMSD < 2 Å from crystal pose 8648 poses (~2.3 per target) random rotation & translation

Training Procedure

Adam optimization base Ir = 0.00001momentum = 0.9momentum2 = 0.999max iter = 100000 $batch_size = 50$

Caffe

Atom Fitting $a^* = \arg\min ||d - D(a)||_2^2 + \lambda E(a)$ a

Conditioning on the Receptor

Acknowledgements

Matt Ragoza

Jocelyn Sunseri Paul Francoeur

Department of Computational and Systems Biology

National Institute of **General Medical Sciences** R01GM108340

O github.com/gnina

http://bits.csb.pitt.edu

@david_koes

COMP: Poster Session Tuesday, Aug 21 6:00 PM Exhibit Hall B1, Boston Convention & Exhibition Center

COMP 528: Structure-based searching of chemical space with Pharmit Thursday, Aug 23 9:20 AM Douglass, Westin Boston Waterfront

