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Machine Learning
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Features X Prediction yModel
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, 
a feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.
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Deep Learning
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Discriminative Model
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Features X Prediction y
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Generative Model
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Features X
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Generative Adversarial Networks
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Generator

Discriminator

True Examples
Loss

Is this a 
real dog 
picture?
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Generative Adversarial Networks
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http://torch.ch/blog/2015/11/13/gan.html



https://youtu.be/G06dEcZ-QTg

https://www.youtube.com/watch?v=G06dEcZ-QTg
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Generative models for  
structure-based drug design
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Structure Based Drug Design

Virtual Screening Lead Optimization

Pose Prediction Binding Discrimination Affinity Prediction



University of Pittsburgh Computational and Systems Biology

 12

Purchasable Accessible

Matching

Scoring

Dynamics
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � �

Drug Discovery Funnel

http://pharmit.csb.pitt.edu
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O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461
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Protein-Ligand Scoring
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Model
Pose Prediction

Binding 
Discrimination

Affinity Prediction
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Convolutional Neural Networks
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Convolutional Filters
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Protein-Ligand Representation
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Why Grids?
Pros 

• clear spatial relationships 

• amazingly parallel 

• easy to interpret
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Cons 

• coordinate frame dependent 

• pairwise interactions not explicit

≠
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Model
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Results
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Beyond Scoring

 21https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams
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Beyond Scoring
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2Q89

More Oxygen Here

Less Oxygen Here
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Minimizing Low RMSD Poses

better worse
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Iterative Refinement
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Generative Models
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noise sample generated receptor & ligand grid

Generative models approximate a data distribution directly. They can 
map samples from one distribution (noise or input data) to realistic 
samples from an output distribution of interest.
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Autoencoding
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Latent 
Space

GeneratorEncoder L2 Loss
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Context Encoding

 29http://people.eecs.berkeley.edu/~pathak/context_encoder/
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Context Encoding
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receptor grid generated ligand grid
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Receptor-Conditional Ligand-Variational Model
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L2 loss

GAN loss
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Receptor-Conditional Ligand-Variational Model
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L2 loss

GAN loss
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Receptor-Conditional Ligand-Variational Model
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GAN loss

Discriminator
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Model Architecture
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Model Architecture
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n_levels = 3 
conv_per_level = 3 
n_filters = 32 
width_factor = 2 
n_latent = 1024 
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Training Procedure
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2016 PDBbind refined set
3765 crystal structures 
Vina docking 
RMSD < 2 Å from crystal pose 
8648 poses (~2.3 per target) 
random rotation & translation 

Adam optimization 
base_lr = 0.00001 
momentum = 0.9 
momentum2 = 0.999 
max_iter = 100000 
batch_size = 50 
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Autoencoding Examples

 372AVO
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Autoencoding Examples

 384PYX
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Autoencoding Examples

 391LBF
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Atom Fitting
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Ligand Variation
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to be continued…

L2 loss

GAN loss
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Conditioning on the Receptor
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