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1. Does the compound do what you want it to? 
2. Does the compound not do what you don’t want it to? 
3. Is what you want it to do the right thing?
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generalizes to new targets

Requires molecular target with 
known structure and binding site
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Structure Based Drug Design
Virtual Screening Lead Optimization

Pose Prediction Binding Discrimination Affinity Prediction



University of Pittsburgh Computational and Systems Biology

6

Structure Based Drug Design
Virtual Screening Lead Optimization

Pose Prediction Binding Discrimination Affinity Prediction



University of Pittsburgh Computational and Systems Biology

Protein-Ligand Scoring
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r1 r2d

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

AutoDock Vina
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Can we do better?
Accurate pose prediction, binding discrimination, and affinity 
prediction without sacrificing performance? 

Key Idea: Leverage “big data” 
• 231,655,275 bioactivities in PubChem 
• 125,526 structures in the PDB 
• 16,179 annotated complexes in PDBbind
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Convolutional Neural Networks
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Deep Learning
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Convolutional Neural Networks



University of Pittsburgh Computational and Systems Biology

CNNs for Protein-Ligand Scoring
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CNN
Pose Prediction

Binding 
Discrimination

Affinity Prediction
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(R,G,B) pixel
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.



University of Pittsburgh Computational and Systems Biology

Training Data
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Pose Prediction

4056 protein-ligand complexes 
• diverse targets 
• wide range of affinities 
• generate poses with AutoDock Vina 
• include minimized crystal pose 

Affinity Prediction

• 8,688 low RMSD poses 
• assign known affinity 
• regression problem 
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Data Augmentation
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Model
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Results
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Trained on PDBbind refined; tested on CSAR
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Results

15
Trained on PDBbind refined; tested on CSAR

Clustered Cross-Validation
RMSE = 1.69 

R = 0.57 
AUC = 0.90
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Visualization
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masking gradients layer-wise relevance

1UGX
Score: 0.62
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Visualizing Empty Space
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Beyond Scoring
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Beyond Scoring

18https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams
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Beyond Scoring
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Beyond Scoring
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Optimizing Low RMSD Poses

better worse
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Iterative Refinement

better worse
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Iterative Refinement

better worse
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Docking
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MCMC

Sampling Refinement

N (50) independent Monte Carlo chains 
Scored with grid-accelerated Vina 

Best identified pose retained

MCMC

MCMC

MCMC

MCMC

…

vina/smina/gnina

Vina

CNN

Rescoring 
CNN
pose 

affinity
best 

poses



University of Pittsburgh Computational and Systems Biology

Full CNN Docking
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GPU Performance
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Prospective Evaluation: D3R
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Grand Challenge 3
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cnn_docked_affinity cnn_rescore_affinity cnn_docked_scoring cnn_rescore_scoring vina

cat 0.0701 0.154 -0.0351 0.178 0.179

p38a -0.0784 -0.116 -0.329 -0.305 -0.0631

vegfr2 0.366 0.484 0.434 0.448 0.414

jak2 0.428 0.338 0.39 0.27 0.106

jak2_sub3 0.68 0.369 -0.372 0.159 -0.633

tie2 0.648 0.835 0.136 -0.078 0.561

abl1 0.634 0.745 0.005 0.182 0.713

Spearman Correlation
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Grand Challenge 3: The Good
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Grand Challenge 3: The Good
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Grand Challenge 3: The Good
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Grand Challenge 3: The Bad

32



University of Pittsburgh Computational and Systems Biology

Grand Challenge 3: The Ugly
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and now for something 
completely different…
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Context Encoding

35http://people.eecs.berkeley.edu/~pathak/context_encoder/
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Molecular Context Encoding
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