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Can we do better?
Accurate pose prediction, binding discrimination, and affinity 
prediction without sacrificing performance? 

Key Idea: Leverage “big data” 
• 231,655,275 bioactivities in PubChem 
• 125,526 structures in the PDB 
• 16,179 annotated complexes in PDBbind

 5



University of Pittsburgh Computational and Systems Biology

Machine Learning
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Features Prediction
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Neural Networks

σ(w2⋅x+b2)

σ(w1⋅x+b1)

σ(w3⋅x+b3)

σ(w4⋅x+b4)

The universal approximation theorem 
states that, under reasonable assumptions, 
a feedforward neural network with a finite 
number of nodes can approximate any 
continuous function to within a given error 
over a bounded input domain.
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Deep Learning
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Image Recognition
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https://devblogs.nvidia.com

Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Filters
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CNNs for Protein-Ligand Scoring
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Training Data
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Pose Prediction

4056 protein-ligand complexes 
• diverse targets 
• wide range of affinities 
• generate poses with AutoDock Vina 
• include minimized crystal pose 

- 8,688  <2Å RMSD (actives) 
- 76,743 >4Å RMSD (decoys) 

Affinity Prediction

• 8,688 low RMSD poses 
• assign known affinity 
• regression problem 
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Data Augmentation
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Data Augmentation
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Why Grids?
Pros 

• clear spatial relationships 

• amazingly parallel 

• easy to interpret

 16

Cons 

• coordinate frame dependent 

• pairwise interactions not explicit

≠
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Model
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Results
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Trained on PDBbind refined; tested on CSAR
(pK)

(p
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Results

 18
Trained on PDBbind refined; tested on CSAR

Clustered Cross-Validation
RMSE = 1.69 

R = 0.57 
AUC = 0.90

(pK)

(p
K)



What about water?
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Grid Inhomogeneous Solvation Theory 
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Tom	Kurtzman

GIST analysis of 3BGS (purine nucleoside phosphorylase) active site
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Beyond Scoring
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Beyond Scoring

 22https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams
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Beyond Scoring
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Beyond Scoring
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Minimizing Low RMSD Poses

better worse
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Iterative Refinement
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Iterative Refinement
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Iterative Refinement
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Docking
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MCMC

Sampling Refinement

N (50) independent Monte Carlo chains 
Scored with grid-accelerated Vina 

Best identified pose retained

MCMC

MCMC

MCMC

MCMC

…

vina/smina/gnina

Vina

CNN

Rescoring 
CNN
pose 

affinity
best 

poses
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D3R Grand Challenge 3
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Grand Challenge 3
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cnn_docked_affinity cnn_rescore_affinity cnn_docked_scoring cnn_rescore_scoring vina

cat 0.0701 0.154 -0.0351 0.178 0.179

p38a -0.0784 -0.116 -0.329 -0.305 -0.0631

vegfr2 0.366 0.484 0.434 0.448 0.414

jak2 0.428 0.338 0.39 0.27 0.106

jak2_sub3 0.68 0.369 -0.372 0.159 -0.633

tie2 0.648 0.835 0.136 -0.078 0.561

abl1 0.634 0.745 0.005 0.182 0.713

Spearman Correlation



and now for something 
completely different…
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Discriminative Models

 31

active/decoy

receptor & ligand grid predicted class
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Generative Models

 32
noise sample generated receptor & ligand grid

Generative models approximate a data distribution directly. They can 
map samples from one distribution (noise or input data) to realistic 
samples from an output distribution of interest.
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Context Encoding
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receptor grid generated ligand grid
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Context Encoding

 34http://people.eecs.berkeley.edu/~pathak/context_encoder/
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Model Architecture
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● data_dim (24) 
● resolution (0.5, 1.0) 
● n_levels (3, 4, 5) 
● conv_per_level (1, 2, 3) 
● n_filters (16, 32, 64) 
● width_factor (1, 2) 
● n_latent (512, 1024) 
● pool_type 
○ max pooling 
○ average pooling 
○ strided convolution 

● depool_type 
○ nearest-neighbor 
○ strided deconvolution 

● loss_types 
○ L2 loss
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Context Encoder Examples
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1a30

sdf file ground  truth ce11_24_2_3_64_m_n ce11_24_3_3_64_a_n

1ai5_ligand
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Generative Adversarial Networks
A discriminator network is trained to distinguish real vs. fake receptor-ligand grids 
A generator network (context encoder) is trained to produce output that fools the discriminator

 37

real/fake



https://youtu.be/G06dEcZ-QTg

https://www.youtube.com/watch?v=G06dEcZ-QTg


https://youtu.be/G06dEcZ-QTg

https://www.youtube.com/watch?v=G06dEcZ-QTg
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Preliminary GAN Examples
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1a30

ligand ground  truth GAN

1ai5

fit atoms
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Preliminary GAN Examples
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1a30

ligand ground  truth GAN

1ai5

fit atoms

http://torch.ch/blog/2015/11/13/gan.html
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github.com/gnina
http://bits.csb.pitt.edu
@david_koes

http://github.com/gnina
http://bits.csb.pitt.edu


Filter 
Visualization
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Visualization
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masking gradients layer-wise relevance

1UGX
Score: 0.62


