

Computational Modeling of ERK2, DUSP6, and BCI

Abstract

Extracellular signal-regulated kinase 2 (ERK2) and dual specificity phosphatase 6 (DUSP6) are proteins involved in the mitogen-activated protein kinase (MAPK) pathway which triggers cell proliferation. DUSP6 dephosphorylates ERK2 and thus prevents continuous signaling of cell growth. BCI is a DUSP6 inhibitor first identified in a zebrafish screen that prevents the ERK2 mediated activation of DUSP6. BCI has been shown to reduce cell proliferation in cancer cells, but the BCI binding site and mechanism of action are not known. Determining how BCI regulates DUSP6 and the MAPK pathway would further our understanding of the role of DUSP6 in cancer and potentially aid in the development of new cancer drugs.

In order to create computational models of BCI binding, Amber, a program that creates dynamic simulations of proteins, was utilized to generate simulations of ERK2 and DUSP6 and obtain representative conformations. BCI was docked to the selected conformations using SwissDock to identify the best binding sites. The BCI ligands docked closest to the sites implicated in the DUSP6/ERK2 interaction were selected and their binding affinities were calculated using Smina.

BCI binding sites were identified near the Tyrosine 185 residue on ERK2, near the KIM domain on the DUSP6 N terminal, and close to the catalytic site on the DUSP6 C terminal. We have generated 3 computational models that suggest possible mechanisms of action of BCI inhibition of DUSP6. We used these models to perform a virtual screen for compounds with similar interactions.

Introduction

Models of ERK2 and DUSP6's terminals

Maya AlMoussa, Dr. David Koes Drug Discovery, Systems and Computational Biology (DiSCoBio) University of Pittsburgh Cancer Institute Academy University of Pittsburgh, Pittsburgh, PA 15260

1.Created molecular dynamic simulations of ERK2 and DUSP6 using Amber to understand their movement over time and selected the most representative conformations of each protein

DUSP6 N terminal's overlaid frames

ERK2's overlaid frames

2. Docked BCI to several binding pockets in the ERK2 and DUSP6 conformations using SwissDock.

Original Crystal

binding site.

Conclusion and Future direction

Based on the highest binding affinity scores generated by Smina and the location at which BCI binds on the proteins, it is most likely that the BCI structure binds near the KIM sequence on the DUSP6 N Terminal.

We plan to test the compounds identified in the virtual screen to see which binding modes result in DUSP6 inhibition

DUSP6 C terminal's overlaid frames

Acknowledgments

Dr. David Koes Dr. Andreas Vogt Jocelyn Sunseri Dr. Lotze Lindsey Surmacz UPCI Academy Dr. Joseph Ayoob Leah Russell Gengkon Lum

John S. Lazo, Billy W. Day, and Michael Tsang. "Zebrafish Chemical Screening Reveals an Inhibitor of Dusp6 That Expands Cardiac Cell Lineages."*Nature Chemical Biology*. U.S. National Library of Medicine, n.d. Web. 06 Aug. 2015. Zhou, Bo, Jialin Zhang, Sijiu Liu, Sharanya Reddy, Fang Wang, and Zhong-Yin Zhang. "Mapping ERK2-MKP3 Binding Interfaces by Hydrogen/Deuterium Exchange Mass Spectrometry." The Journal of Biological Chemistry 281.50 (2006): 38834-38844. Print. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise. David Ryan Koes, Matthew P. Baumgartner, and Carlos J. Camacho. Journal of Chemical Information and Modeling 2013 53 (8), 1893-1904 DOI: 10.1021/ci300604z

Results

DISCOBLO

References

Farooq, Amjad, and Ming-Ming Zhou. "Structure and Regulation of MAPK Phosphatases." Cellular Signalling 16.7 (2004): 769-79. Web. Korotchenko, Vasiliy N., Manush Saydmohammed, Laura L. Vollmer, Ahmet Bakan, Kyle Sheetz, Karl T. Debiec, Kristina A. Greene, Christine S. Agliori, Ivet Bahar, Billy W. Day, Andreas Vogt, and Michael Tsang. "In Vivo Structure-Activity Relationship Studies Support Allosteric Targeting of a Dual Specificity Phosphatase." *ChemBioChem* 15.10 (2014): 1436-445. Web.

Molina, Gabriela, Andreas Vogt, Ahmet Bakan, Weixiang Dai, Pierre Queiroz De Oliveira, Wade Znosko, Thomas E. Smithgall, Ivet Bahar,