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Introduction
Computational approaches are invaluable to the drug development pipeline for their low cost and high throughput
compared to experimental assays. Though methods exist for scoring protein-ligand interactions for tasks like virtual
screening and lead optimization, they face a number of issues. One of the major challenges is deciding what features are
most important to use for scoring. Many current approaches require features to be chosen beforehand. Consequently,
these approaches do not fully utilize the vast amount of structural and cheminformatic data that is publicly available. A
scoring function that learned from data the types of chemical interactions that best predict binding would eliminate the
need for arbitrary feature selection. Deep learning is a successful strategy for empirically learning the most influential in
image recognition tasks, and the similarly spatial nature of chemical structures suggests that this approach can be
adapted for protein-ligand scoring. Drawing from the demonstrated ability of hierarchical models to extract abstract
features from images for classification, we introduce a novel approach for learning protein-ligand scoring functions using
convolutional neural networks.

Background

Neural networks are a supervised machine learning algorithm inspired by
the nervous system. A basic network consists of an input layer, one or
more hidden layers, and an output layer of interconnected nodes. Each
hidden node computes a feature that is a function of the weighted input
it receives from the nodes of the previous layer.

Input data are fed forward through the network, and a prediction is
output by the last layer. A neural network is trained by iteratively
updating its weights by minimization of an objective function, for
example, the mean squared deviation between predictions and their
ground truth labels.

Within the last decade convolutional neural networks have become the state-of-
the-art in image classification. Convolutional layers only have connection weights to
small spatial subsets of the previous layer, and apply these weight kernels across
the entire input to produce feature maps.

The fact that convolutional layers learn local features and apply them across the
entire input space leads to faster training and improved accuracy on data with
spatial structure. Though originally intended for classifying images, convolution
works just the same in three or more dimensions.
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§ Community Structure-Activity Resource (CSAR)
§ CSAR version 2010 with 2011 update
§ 337 targets, eliminate weak binders
§ Crystal structures à Known correct poses

§ Docking and labelling with AutoDock Vina
§ Poses < 2Å RMSD à 327 actives
§ Poses > 4Å RMSD à 300 decoys
§ Eliminate ambiguous poses
§ 627 total docked poses

§ Data augmentation by rotation
§ 1 random non-axial rotation
§ 24 unique axial rotations
§ x48 total increase in training examples
§ 30,096 total augmented poses

§ Receiver operator characteristic (ROC)
§ False positive vs. true positive rate
§ Area under ROC curve (AUC)

§ Test-on-train
§ Control for overfitting

§ 3-fold cross-validation
§ Split targets into 3 balanced folds
§ Train 3 models, leaving one fold out
§ Combine performance on test sets

§ Clustered cross-validation
§ Split target families into folds

§ E.g. Kinases

§ Caffe Deep Learning Framework
§ Layer-wise model definition

§ N-dimensional input layer
§ Convolutional layers
§ Non-linear layers (rectified linear units)
§ Dropout regularization
§ Fully-connected layers
§ Softmax (convert to probabilities)
§ Multinomial logistic loss (2-class)

§ Hyperparameter search
§ Learning rate

§ Initial value
§ Rate and shape of decrease

§ Weight decay
§ Performance

§ Mini-batch parallelism (batch size=10)
§ Multi-GPU support (# GPUs=2)
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Conclusion
We have demonstrated that convolutional neural networks can classify active protein-ligand interactions 28% more
accurately compared to AutoDock Vina. Though searching for the optimal parameters can be challenging, the capability
of a well-trained model is evident in its high performance on test data with little preprocessing. Though there is some
benefit gained from meticulously searching for hyperparameters that maximize training convergence, the
improvements witnessed from simple data augmentation outweighed the benefits from finely-tuned hyperparameters
as long as the hyperparameters were in a sensible range. Other transformations such as translation and mirroring could
be applied to further augment the amount of training data and potentially lead to even higher accuracy. In addition, the
fairly small size of the original CSAR dataset implies that accuracy and generalizability have the potential to improve
even more given a larger initial dataset. As the amount of publicly accessible structural data increases, the accuracy and
generalizability of convolutional neural net models will only benefit. We will continue to test these models on larger
datasets and determine what parameters and methods allow the best performance, with the long-term goal of
incorporating them into tools that will increase the rate and quality of drug discovery.

§ Best model achieved peak AUC of 0.82 by clustered cross-validation
§ Compare to AUC of 0.64 using the Vina docking score

§ Model architecture characterized by repeated down-sampling convolution layers
§ Reduce each spatial dimension
§ Double the number of feature maps
§ Repeat until dimensions are consumed

§ Final 1024 convolutional features
§ Receptive fields cover entire input structure
§ Regularized with 50% dropout

§ 2-class output probabilities
§ 1024 features fully-connected to 2 outputs
§ Softmax converts them to probabilities

§ Voxel	grid	centered	at	active	site
§ 34	atom	type	channels

§ 16	receptor	atom	types
§ 18	ligand	atom	types

§ 24Å3 Gaussian	atom	grid
§ 0.5Å	resolution
§ 493 points

§ 34*49*49*49	=	4,000,066	values

§ No data augmentation
§ Peak cross-validation AUROC of 0.74
§ Near-perfect test-on-train accuracy; overfitting

§ Data augmentation by axial and non-axial rotation
§ Peak cross-validation AUROC of 0.82
§ Test-on-train accuracy took longer to overfit
§ x48 more examples à x48 more iterations before

an example is seen twice

§ Hyperparameters affect training convergence
§ Ranges of values plateau to similar AUC
§ Parameters at either extreme inhibit learning

§ Rate of learning rate decrease (gamma)
§ Fast decrease à slow convergence
§ Slow decrease à oscillations

§ Weight magnitude penalization (weight decay)
§ 0.001 helped avoid overfitting
§ 0.005 prevented any learning

Hyperparameter	Selection

Effect	of	Data	Augmentation

Model	Performance

One possible pose of a small molecule
binding to a protein target.

A simple 3-layer neuralnetwork.

Our large models fail to benefit from multi-GPU
training due to large communication overheads.
Reducing these overheads is a current research goal.

Timeper iteration for 1-8GPUs


