Protein-Ligand Scoring with Convolutional Neural Networks

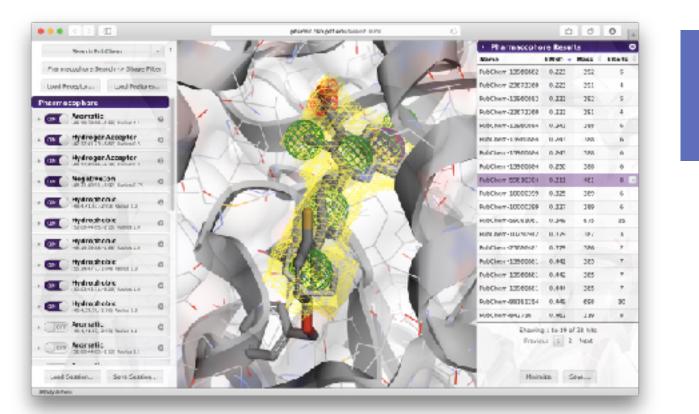
David Koes

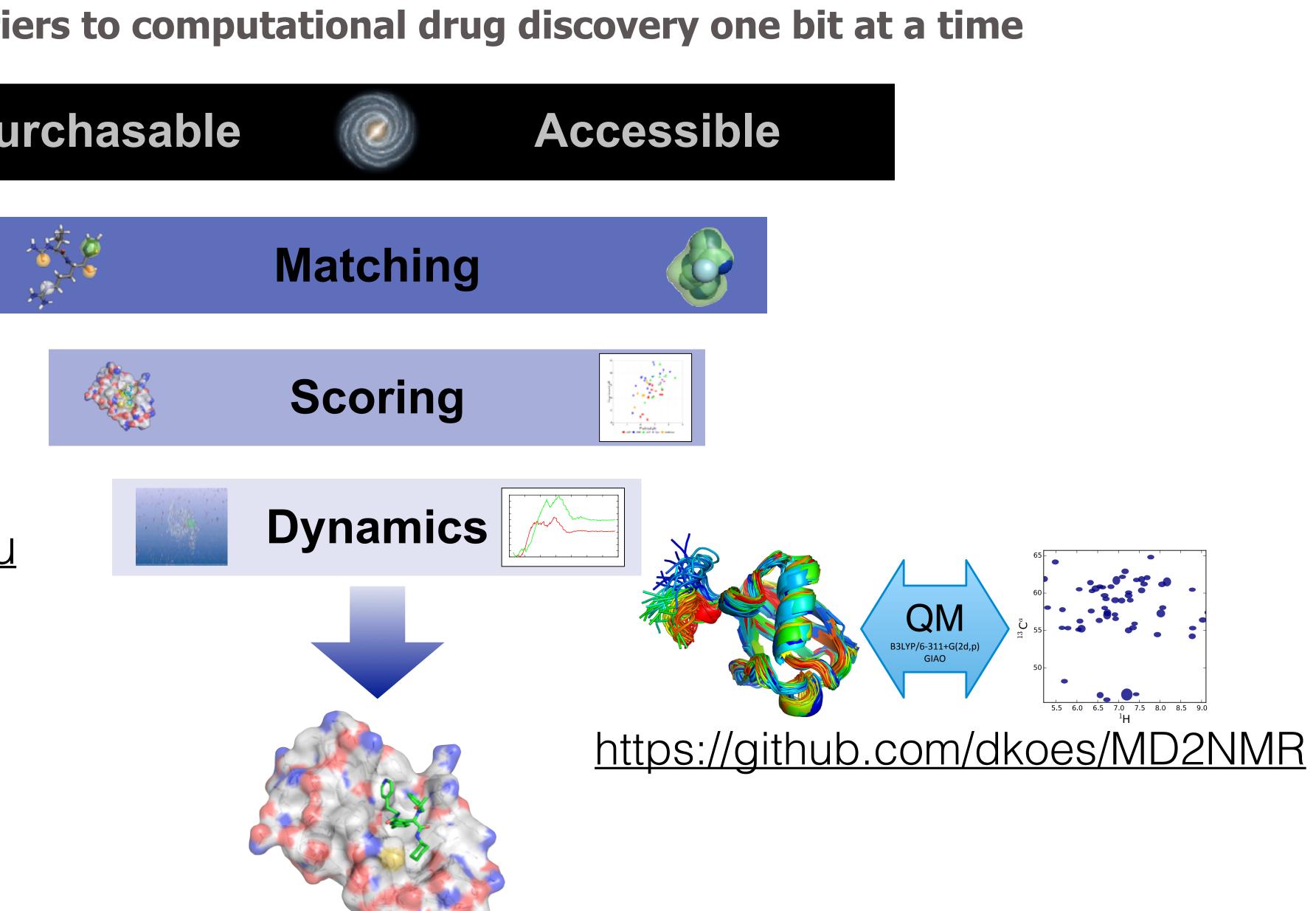
@david_koes

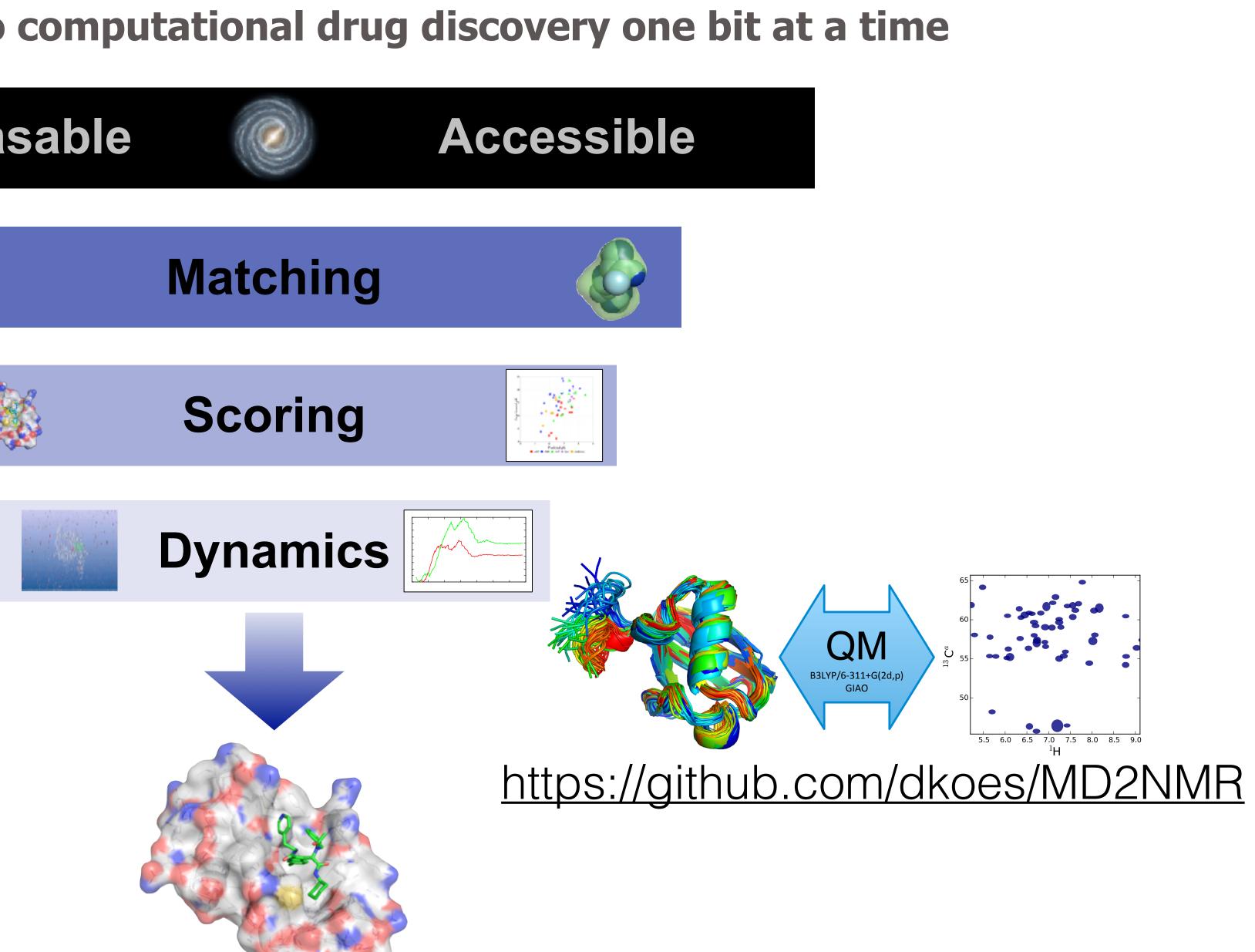
Novartis June 23, 2017

Removing barriers to computational drug discovery one bit at a time

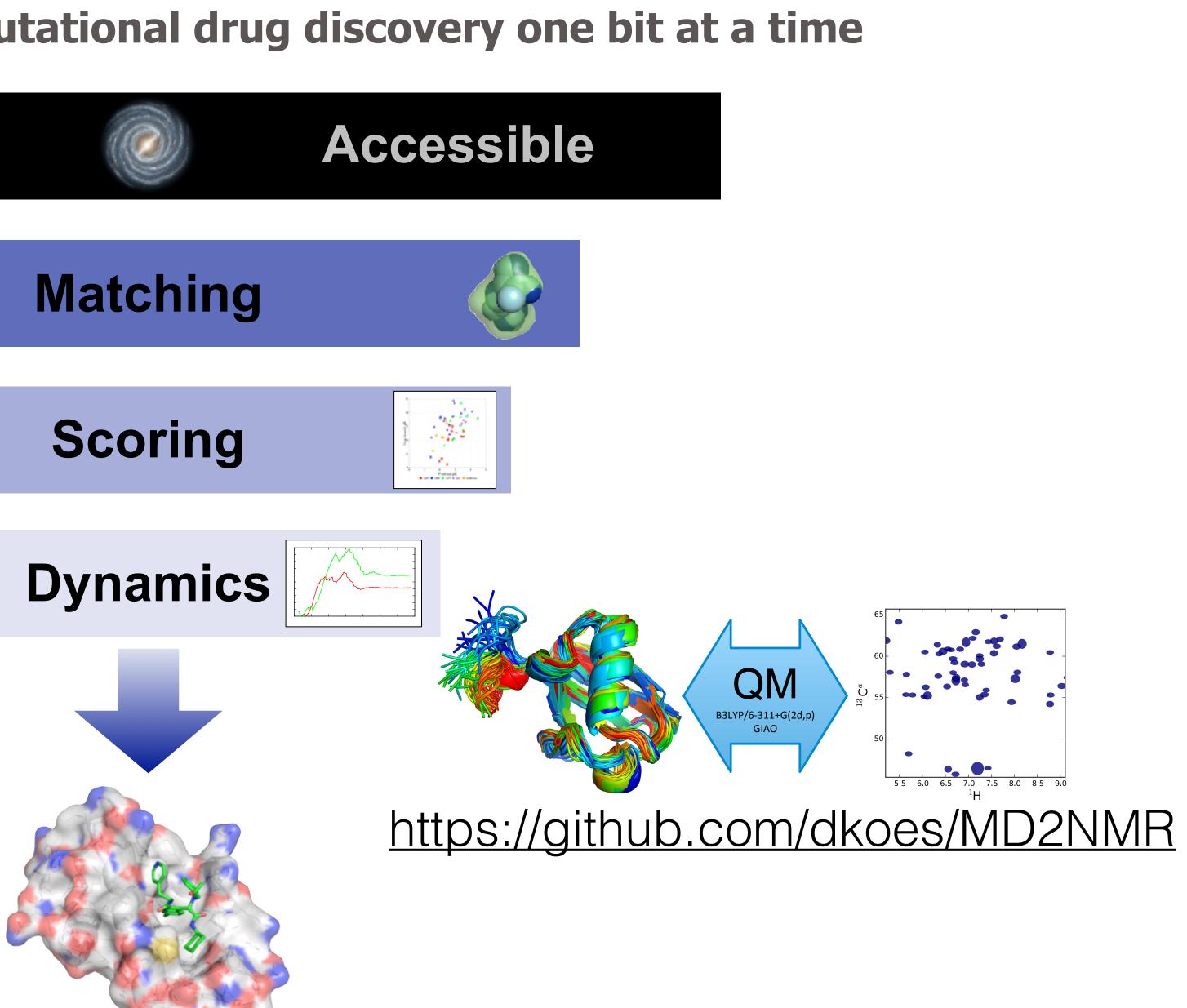
Purchasable





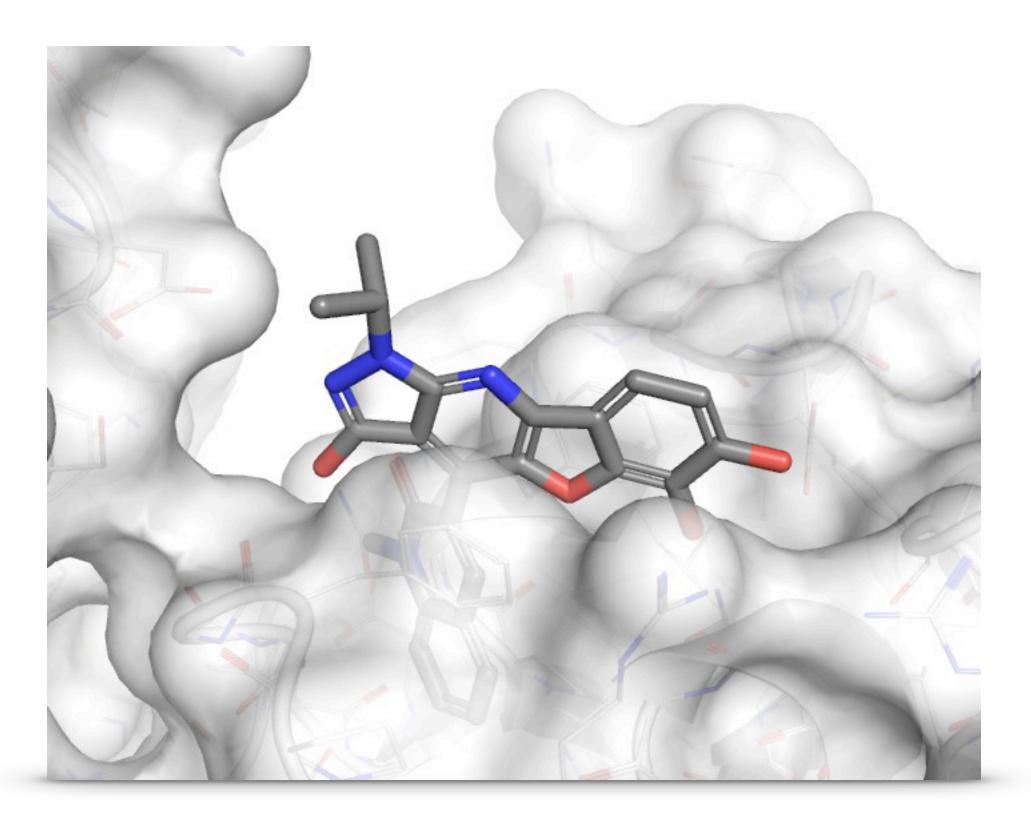


http://pharmit.csb.pitt.edu

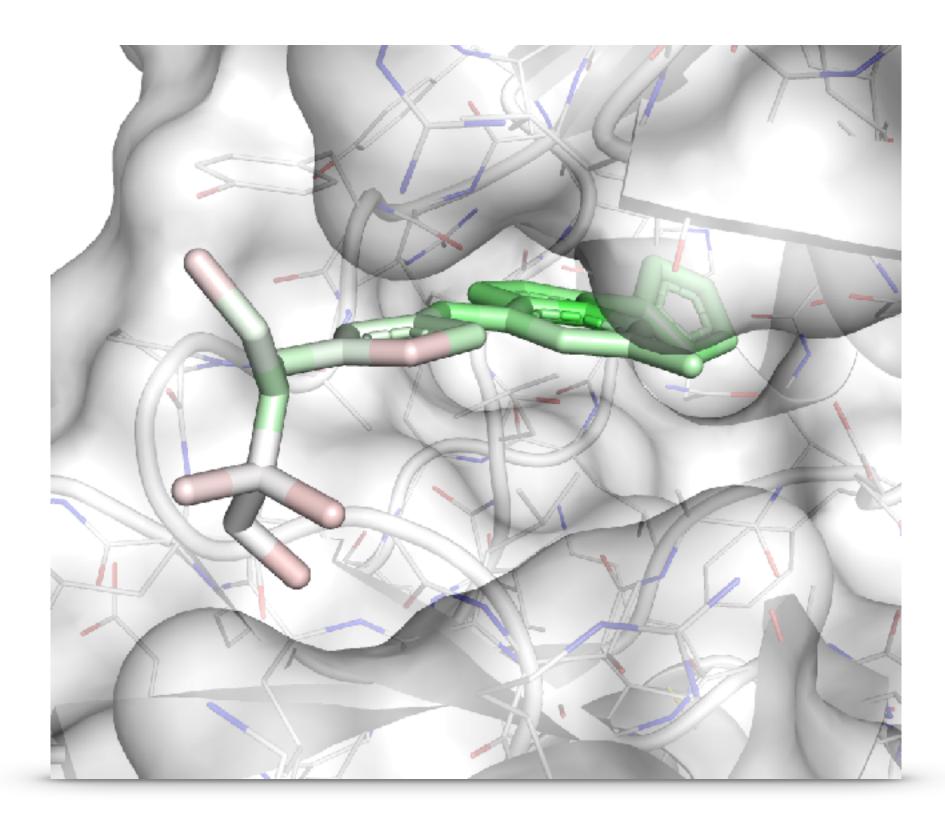


Computational and Systems Biology

Structure Based Drug Design **Virtual Screening** Lead Optimization



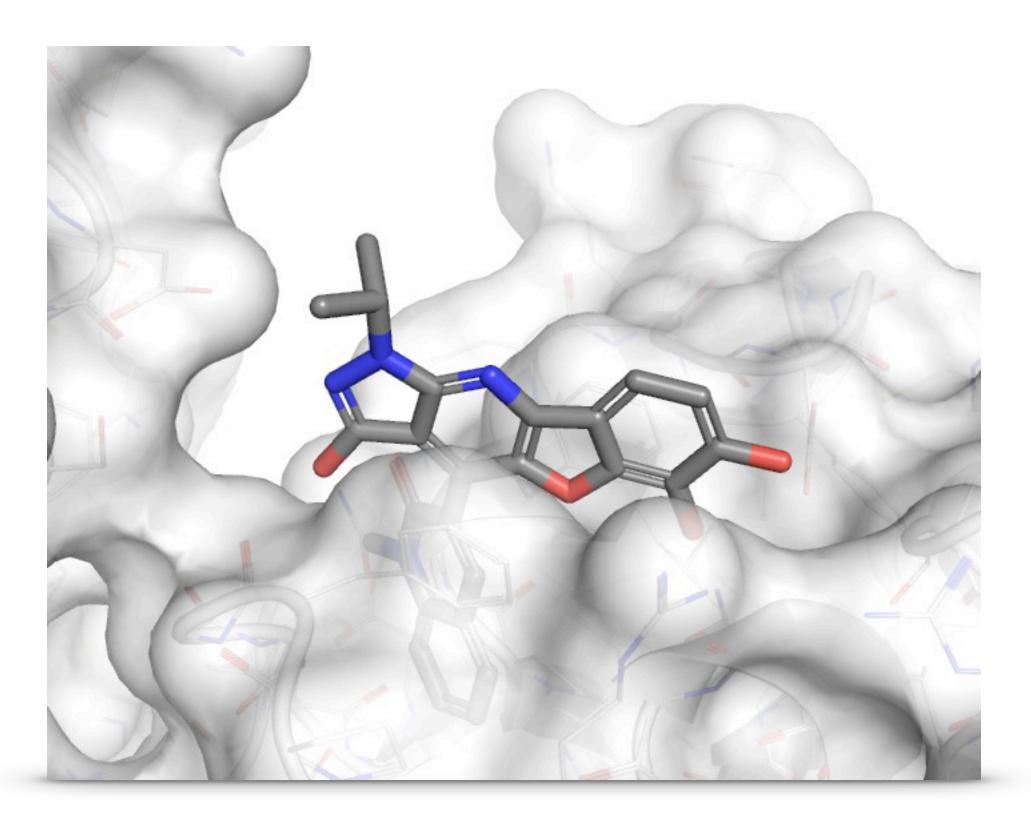
Pose Prediction



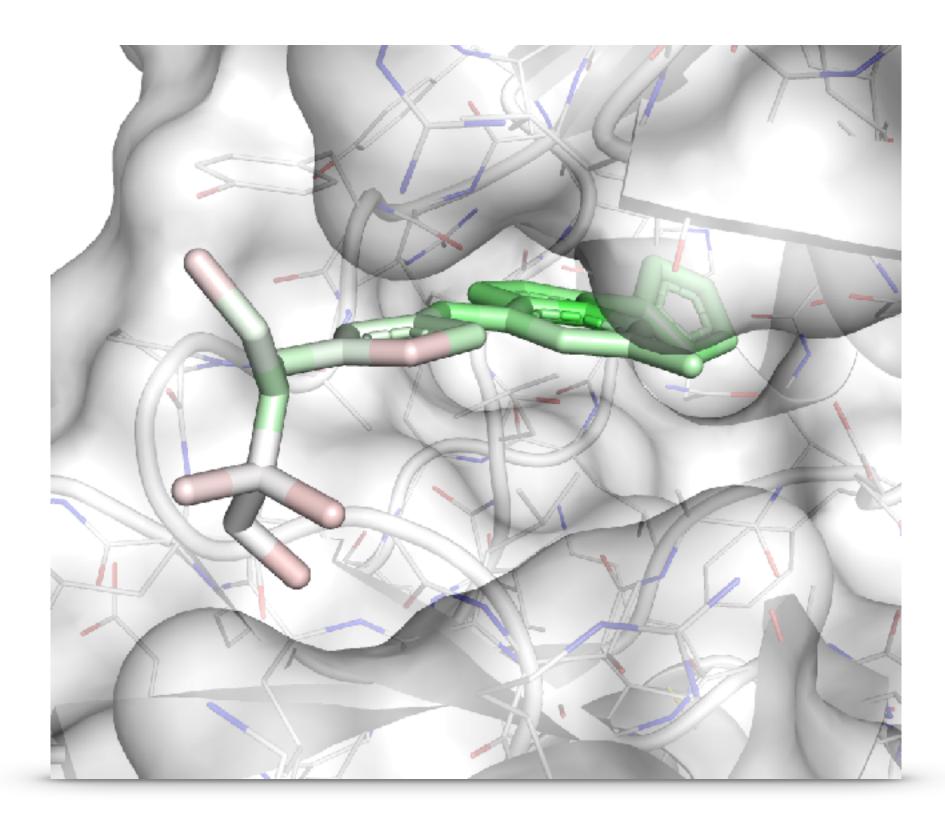
Binding Discrimination

Affinity Prediction

Structure Based Drug Design **Virtual Screening** Lead Optimization



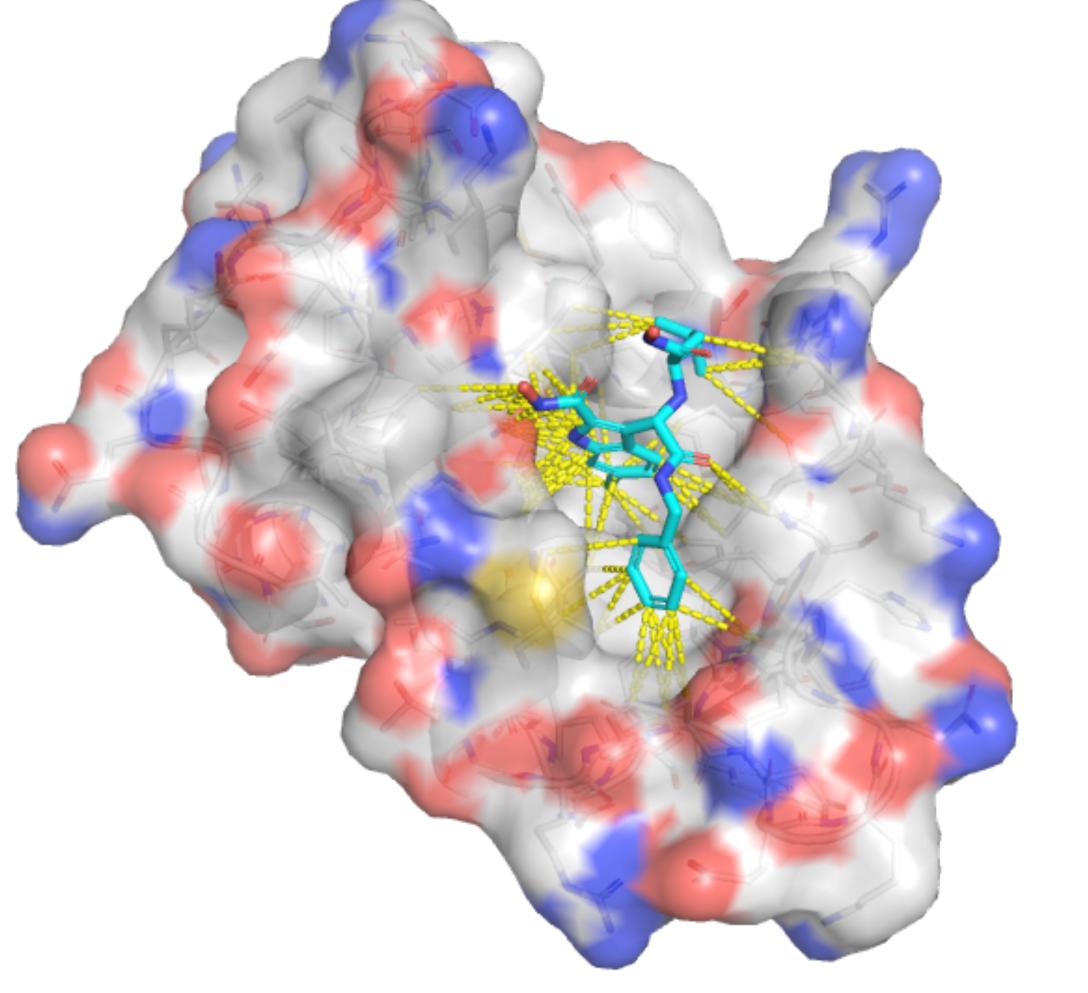
Pose Prediction



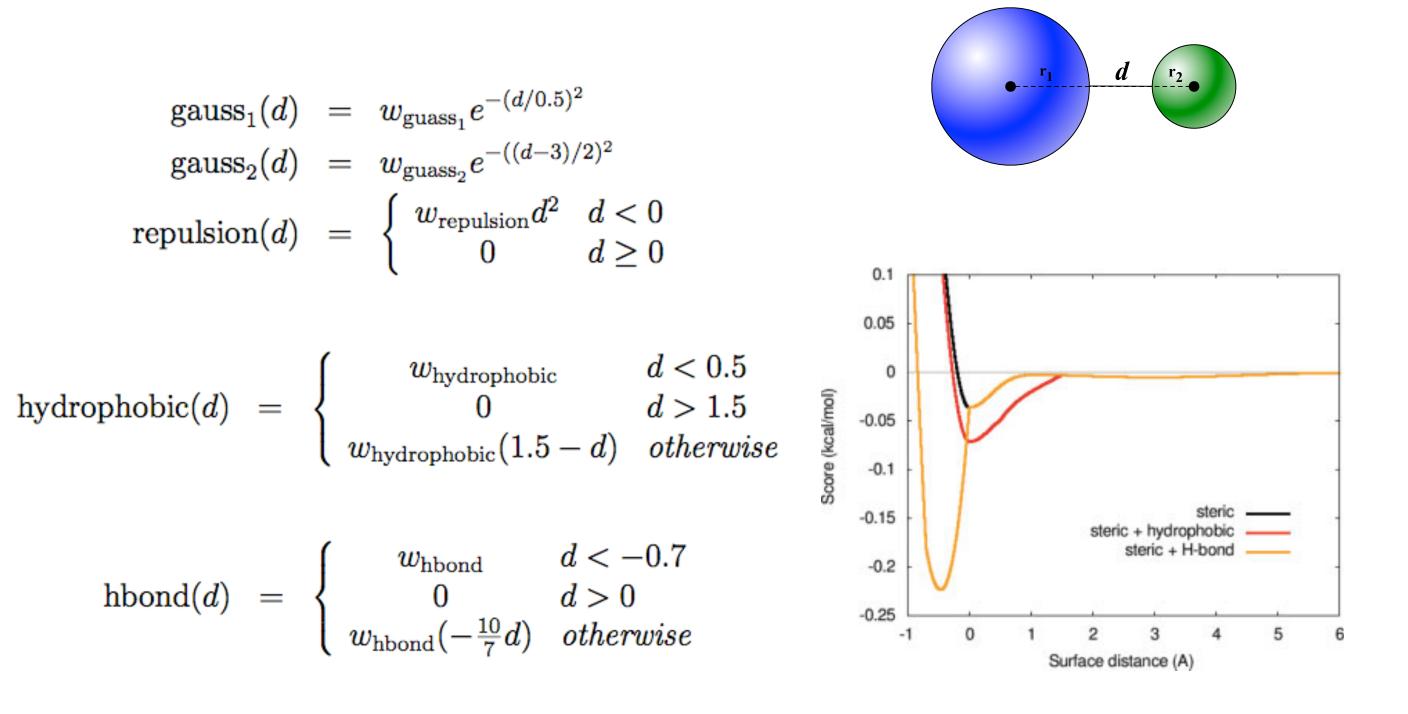
Binding Discrimination

Affinity Prediction

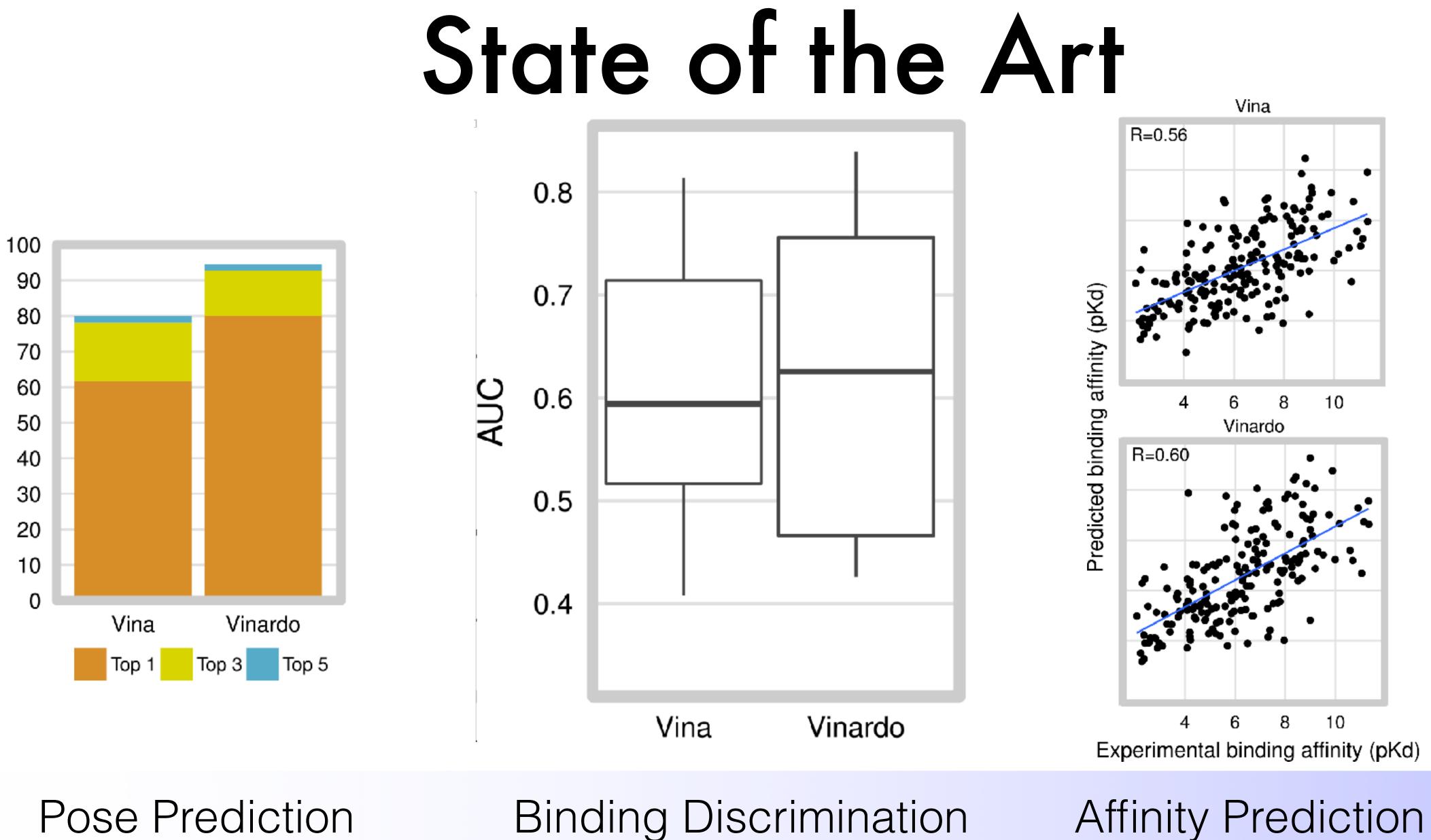
Protein-Ligand Scoring



AutoDock Vina



O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461



Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 11(5): e0155183. doi:10.1371/journal.pone.0155183

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?

Key Idea: Leverage "big data"

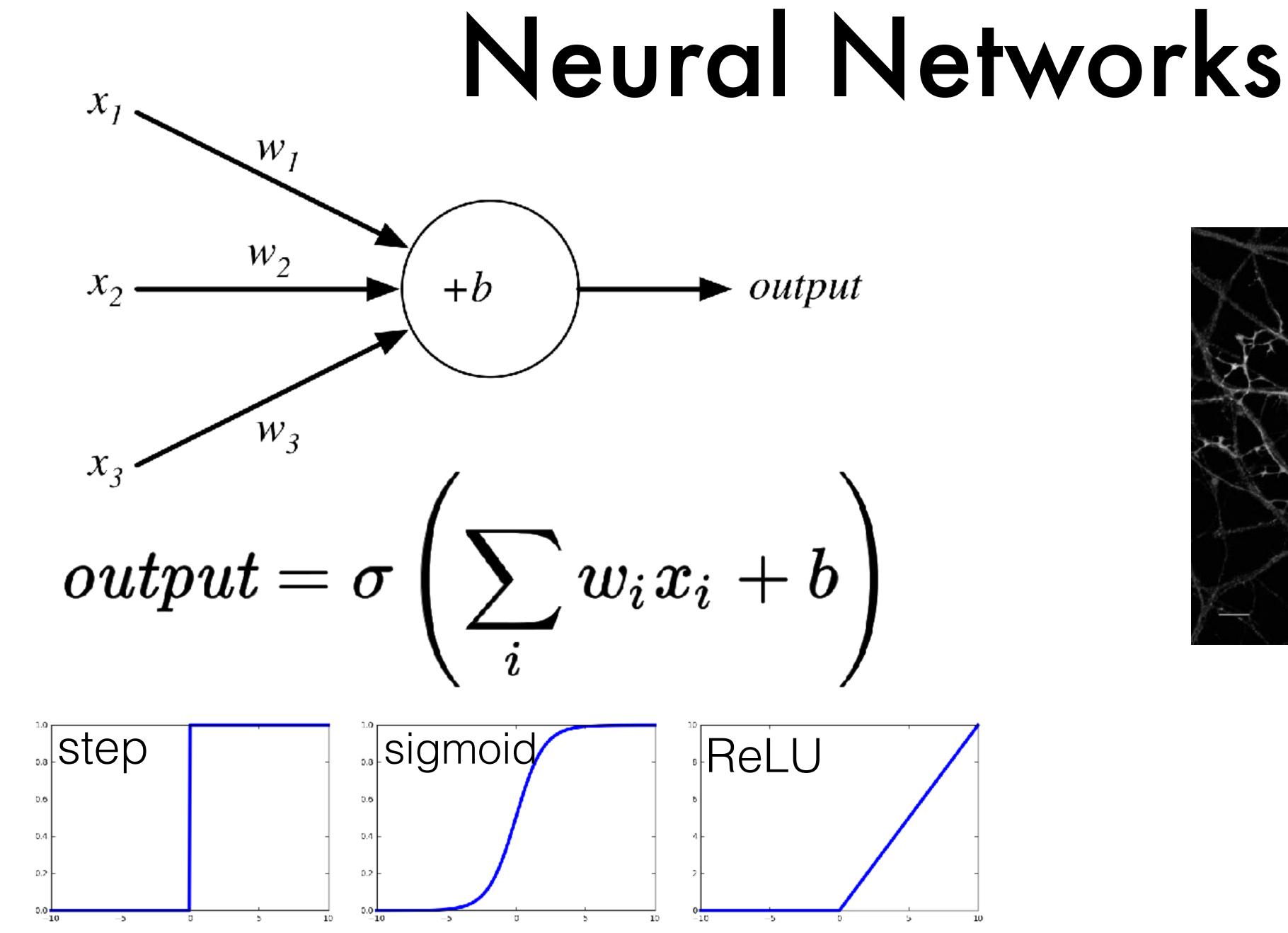
- 231,655,275 bioactivities in PubChem
- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind

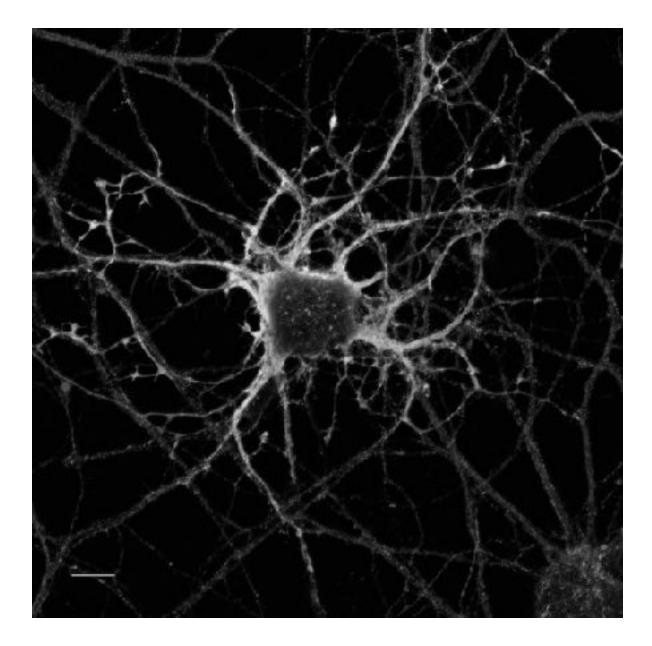
Can we do better?

Machine Learning

Computational and Systems Biology

Noce $\rightarrow y$ Prediction

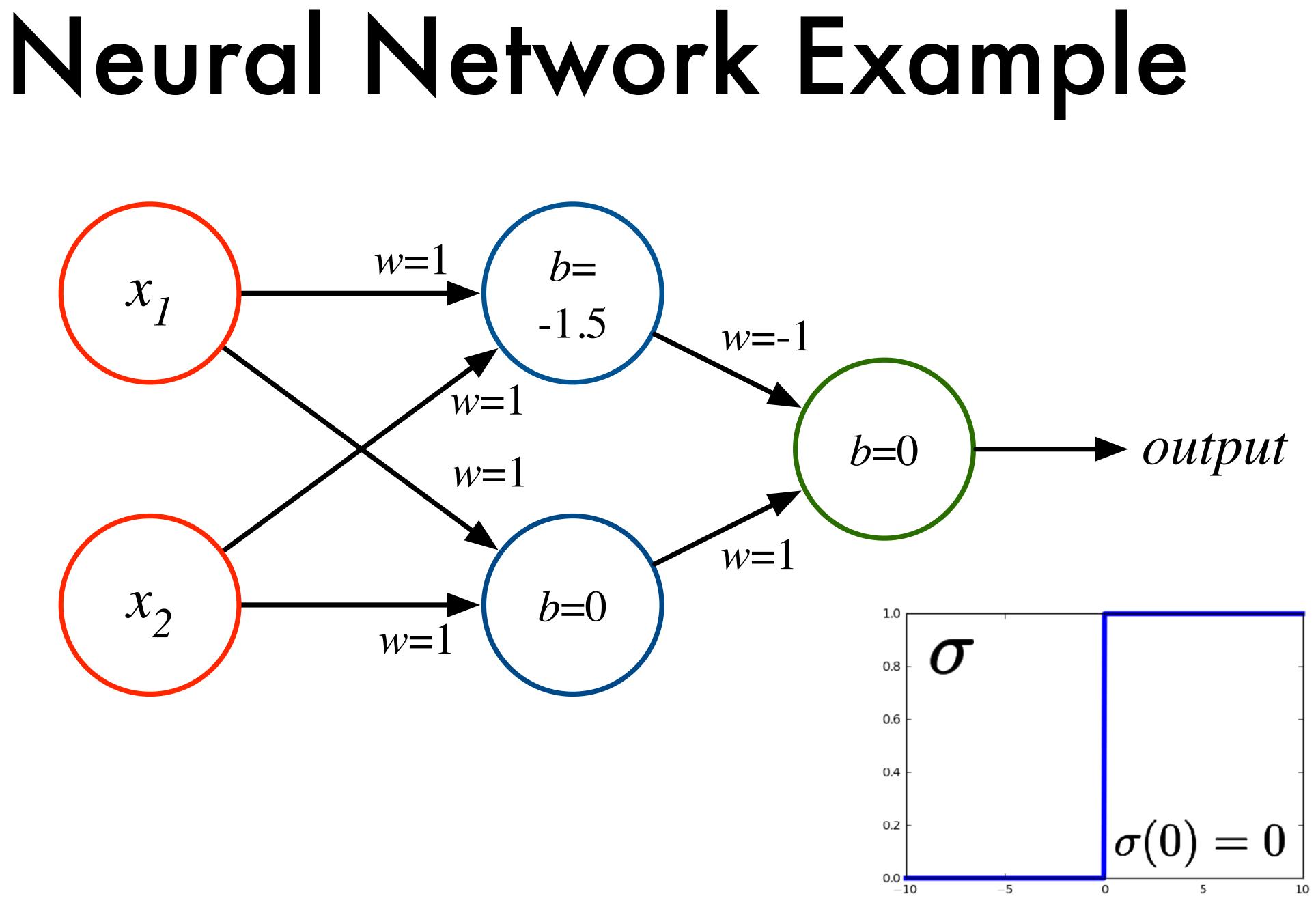


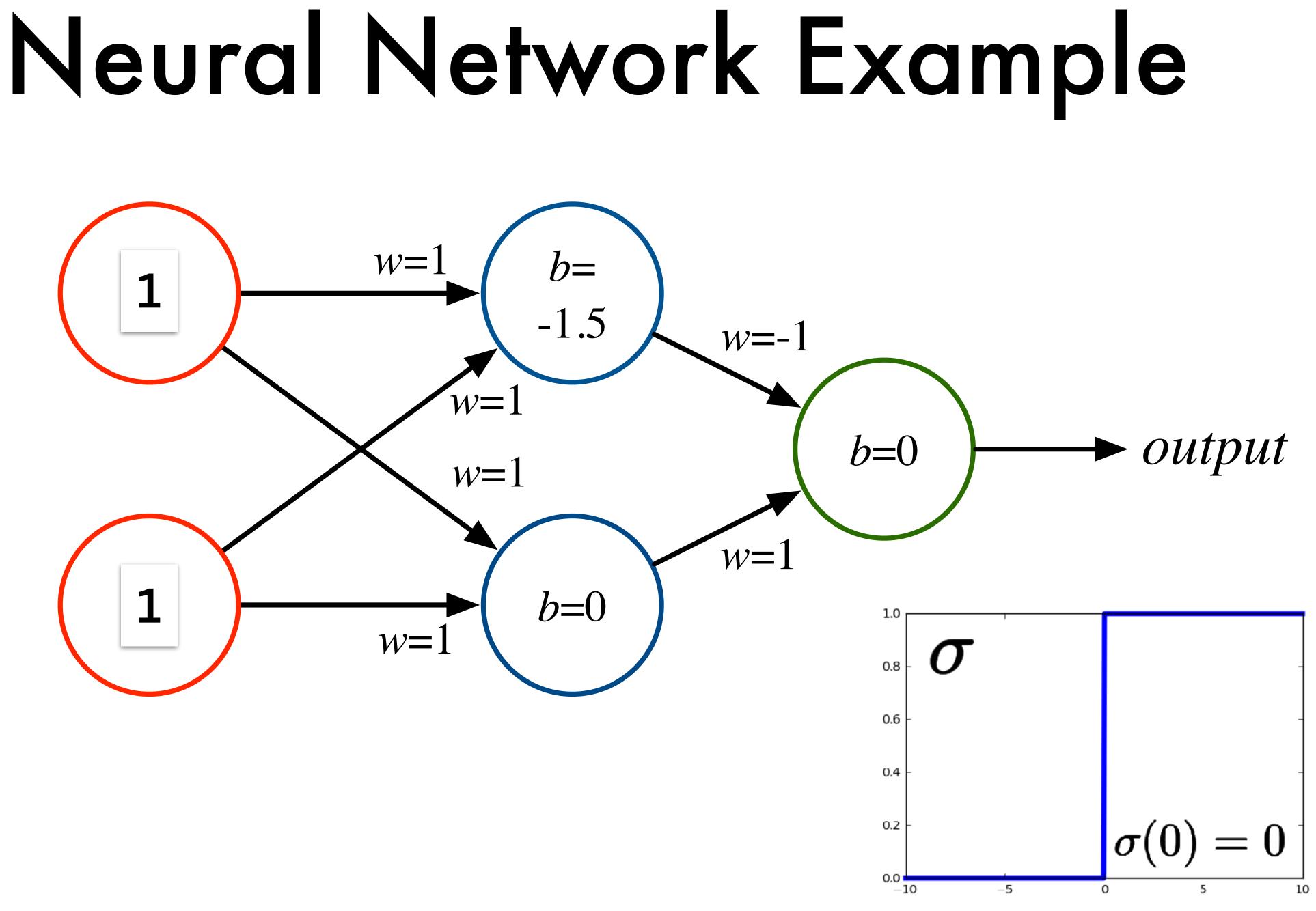


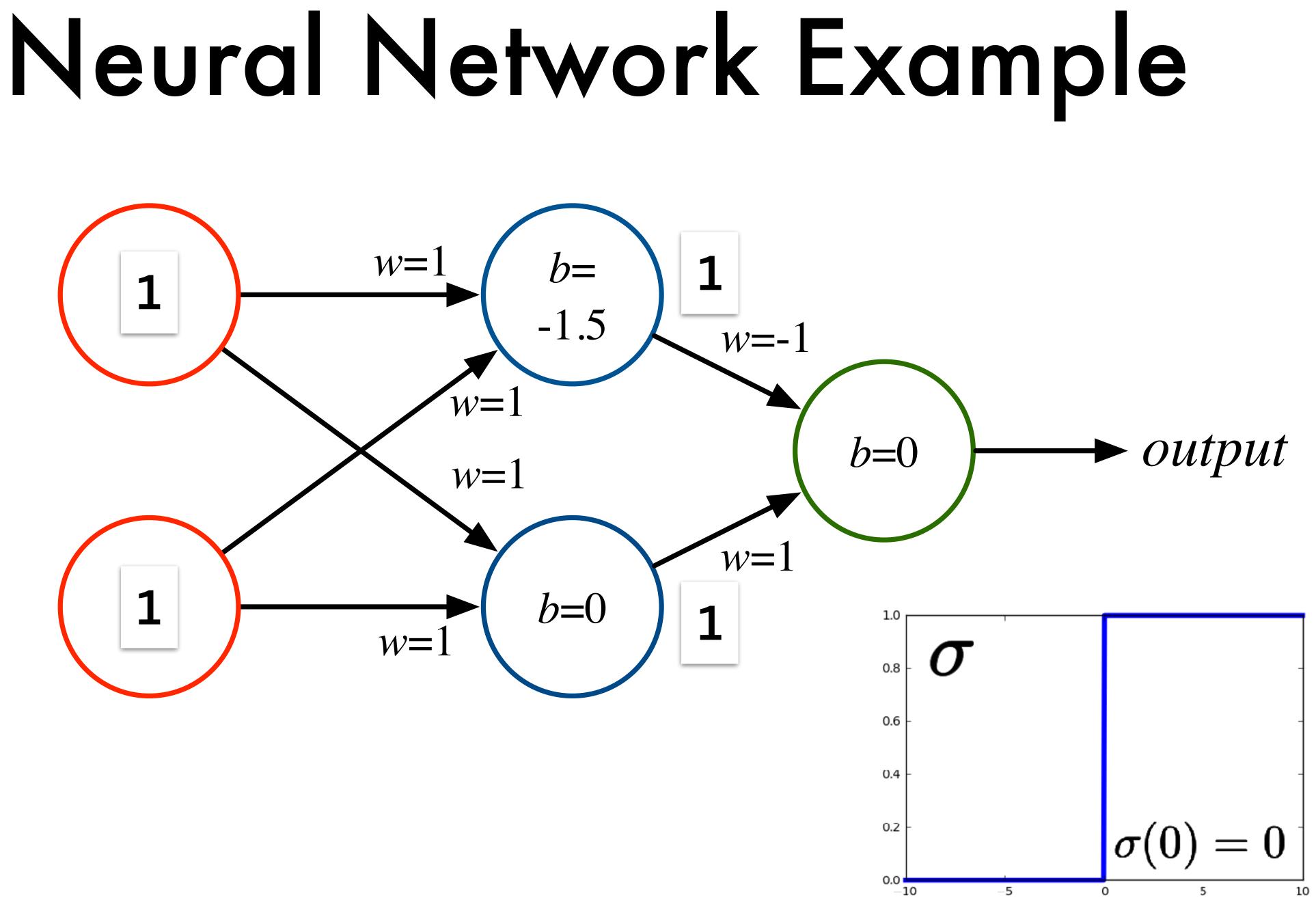
w=1 x_1 w=1w=1

w=1

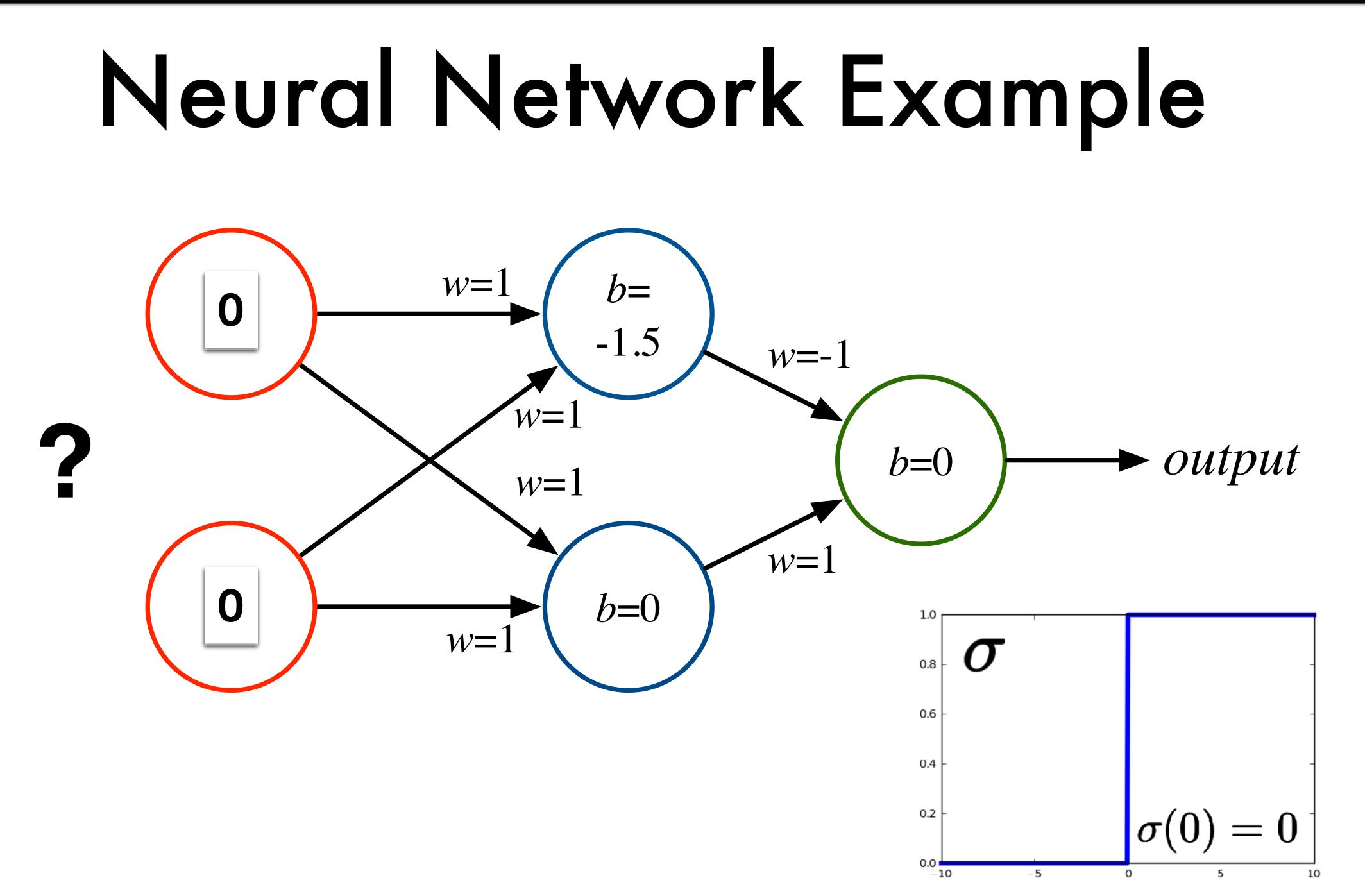
 x_2

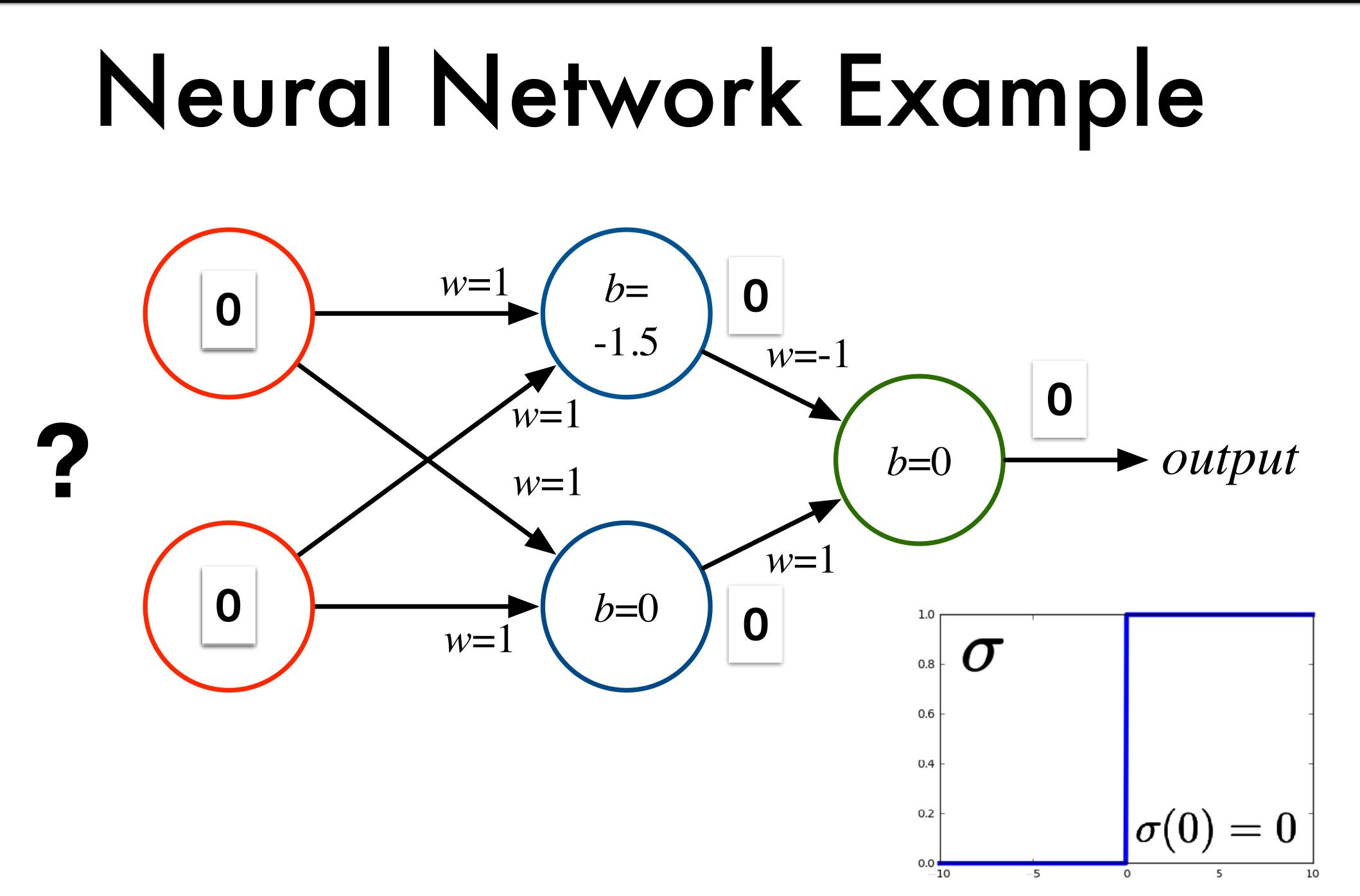


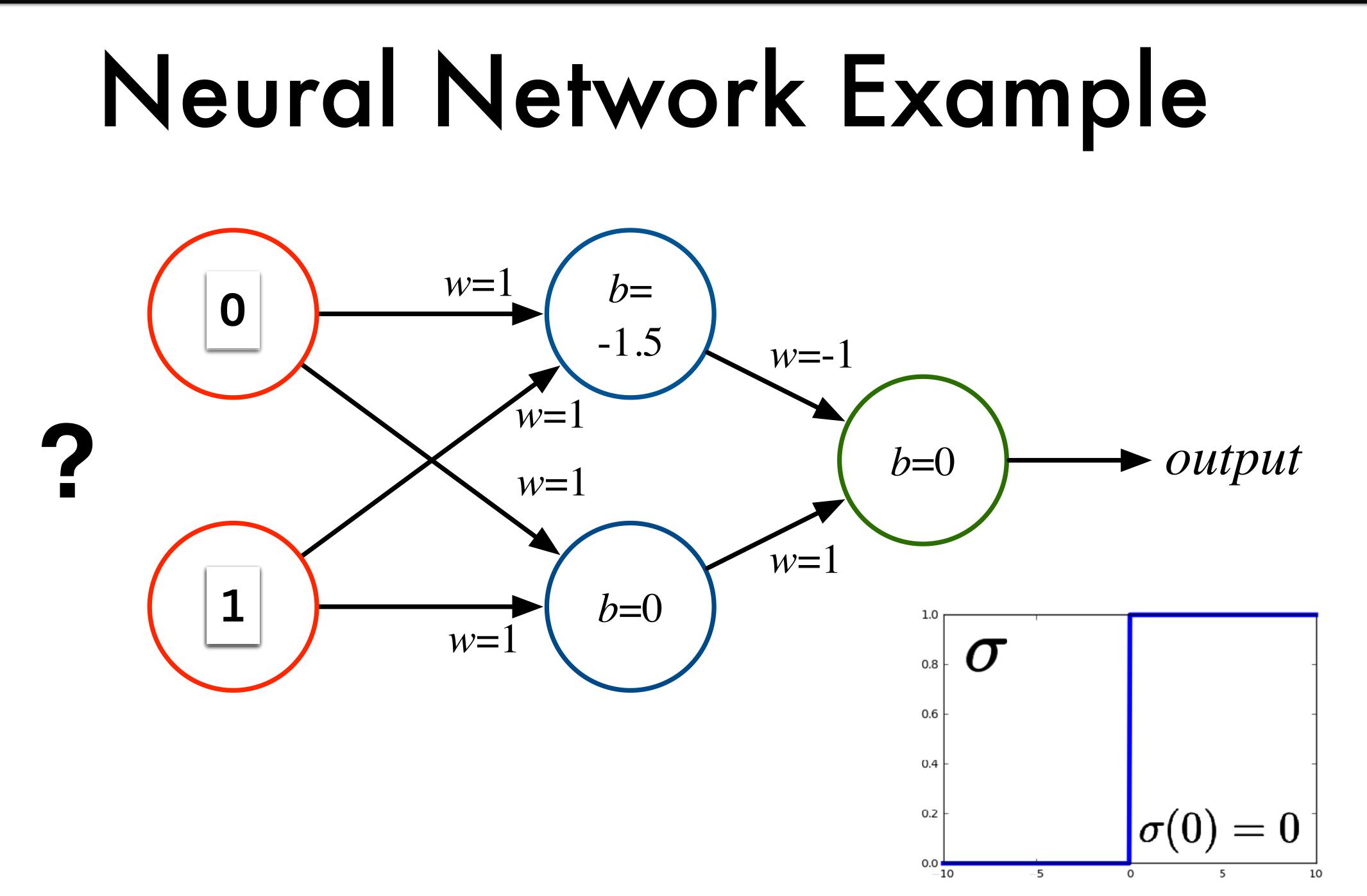


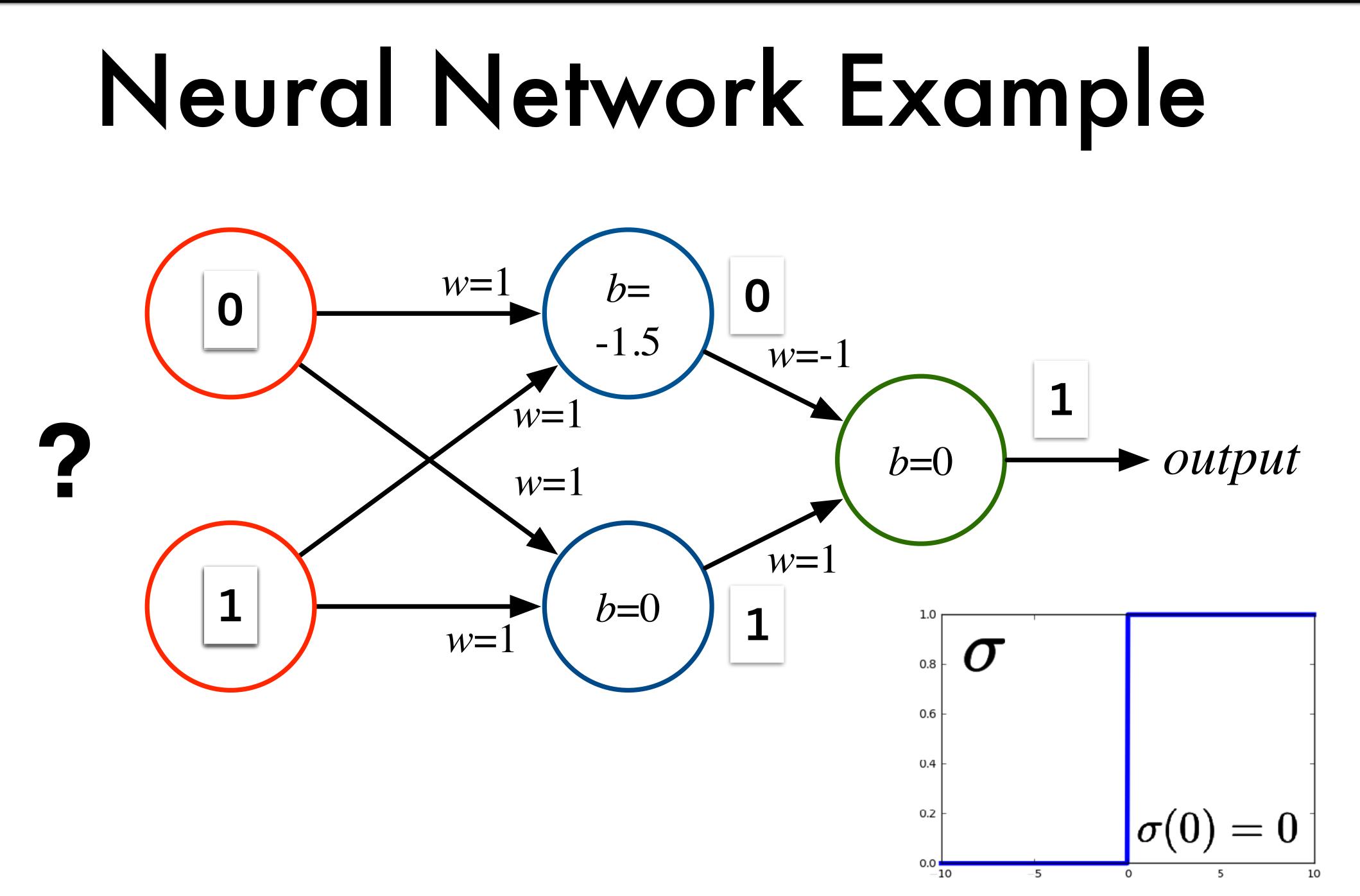


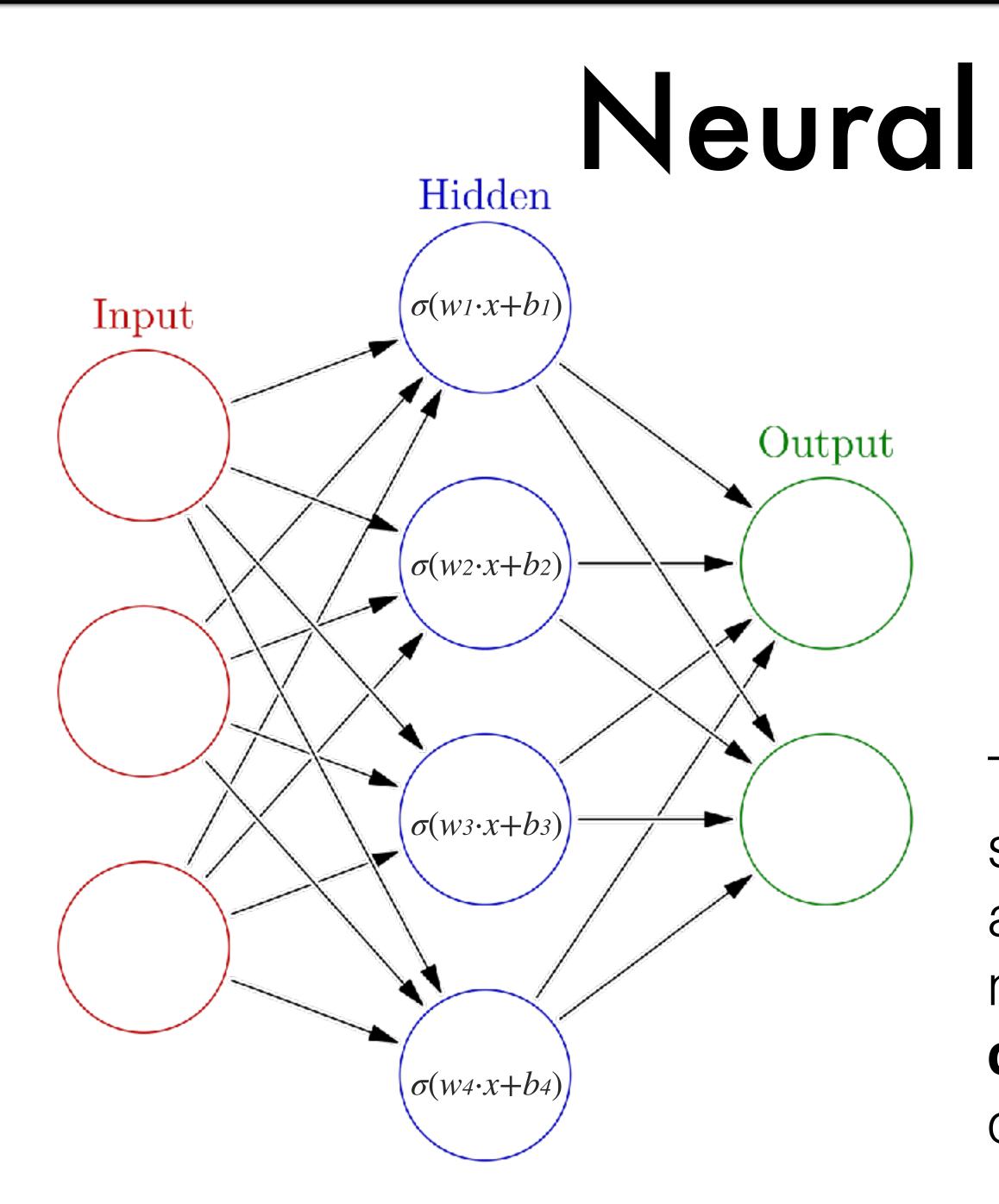




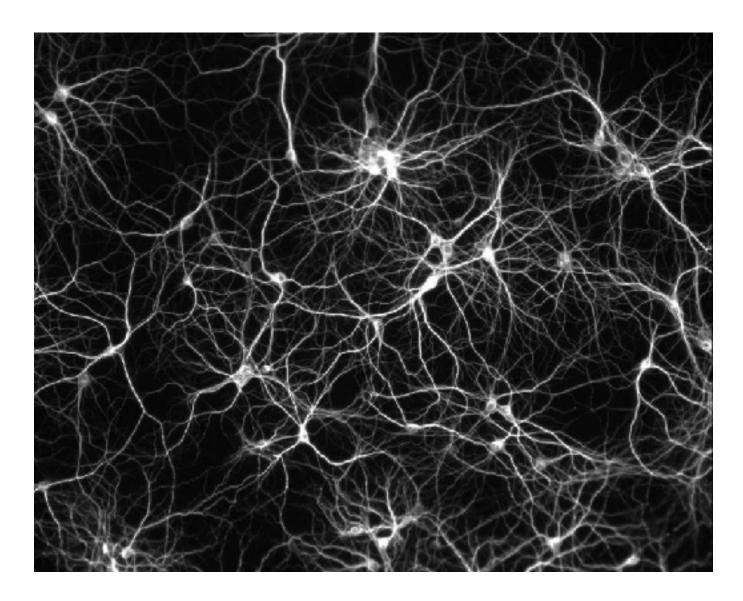




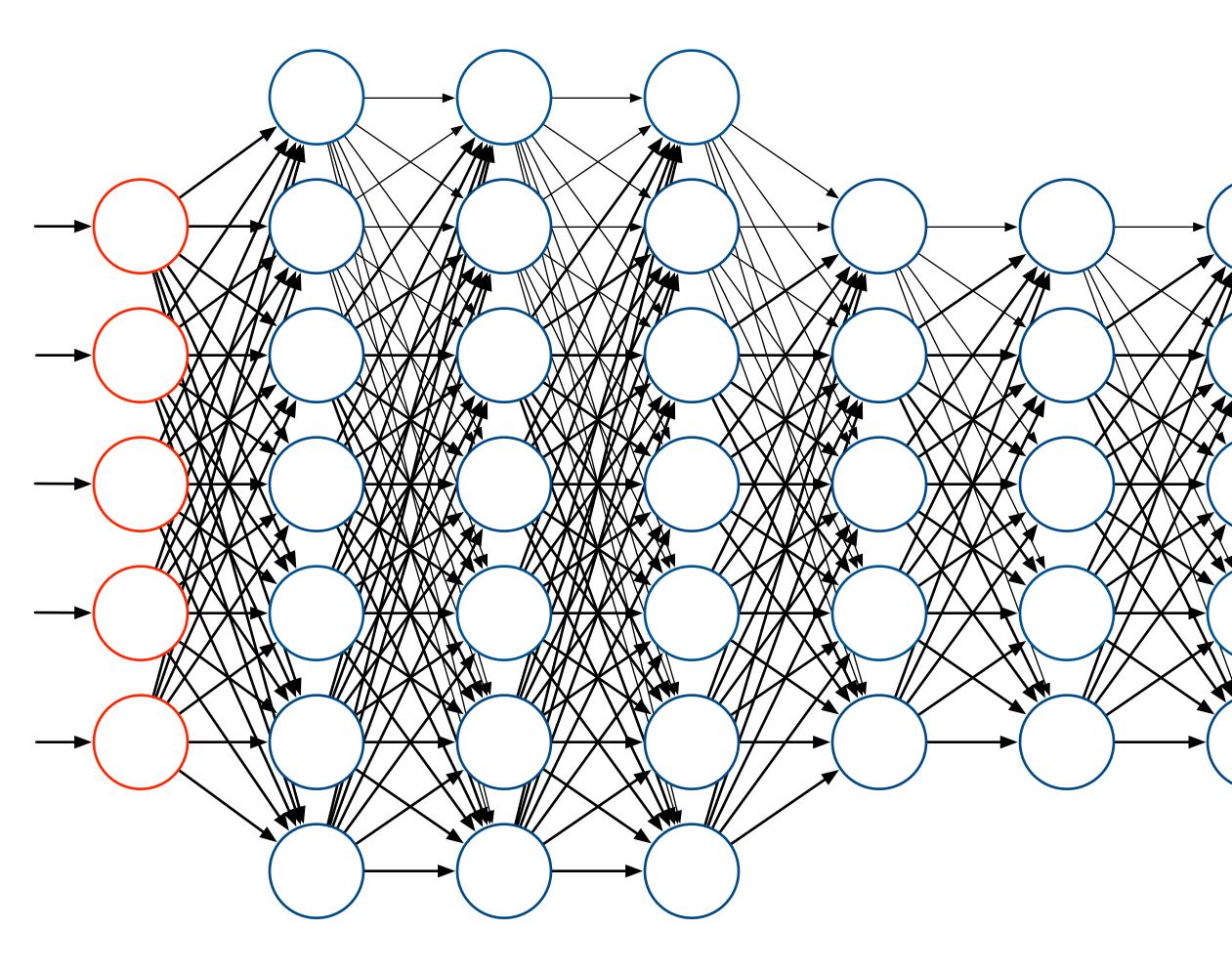




Neural Networks



The **universal approximation theorem** states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

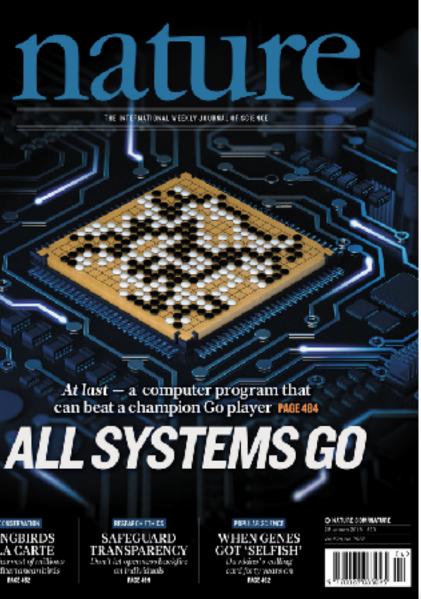


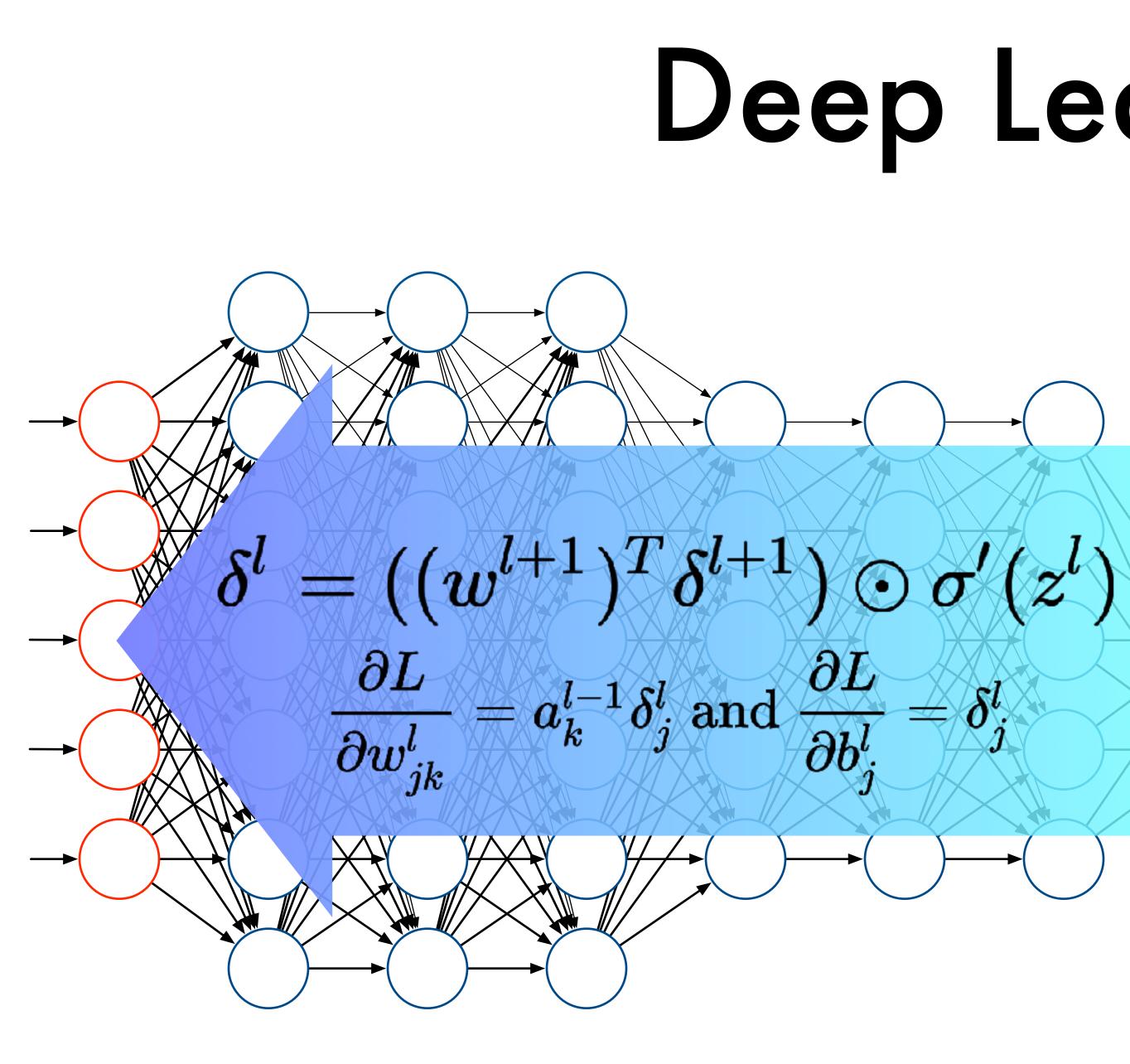
Deep Learning

At last – a computer program that can beat a champion Go player MAGE 484

SAFEGUARD TRANSPARENCY Dentifier openness backfire an individuals SONGBIRDS À LA CARTE

WHEN GENES GOT 'SELFISH' Davisite's calling card/set/wears on





Deep Learning

At last – a computer program that can beat a champion Go player MGE484

SAFEGUARD TRANSPARENCY Don't int operations backfire an individuals

GOT 'SELFISH Davisite's calling

amazon

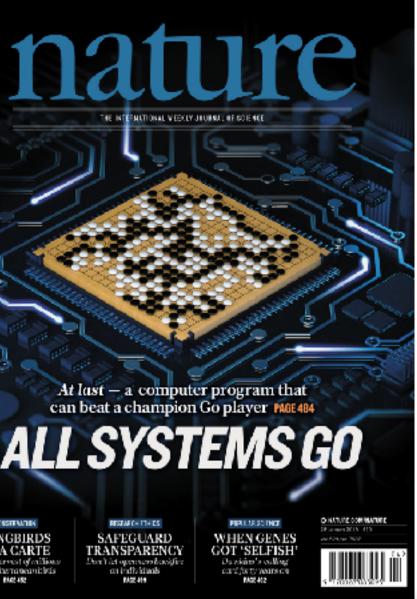
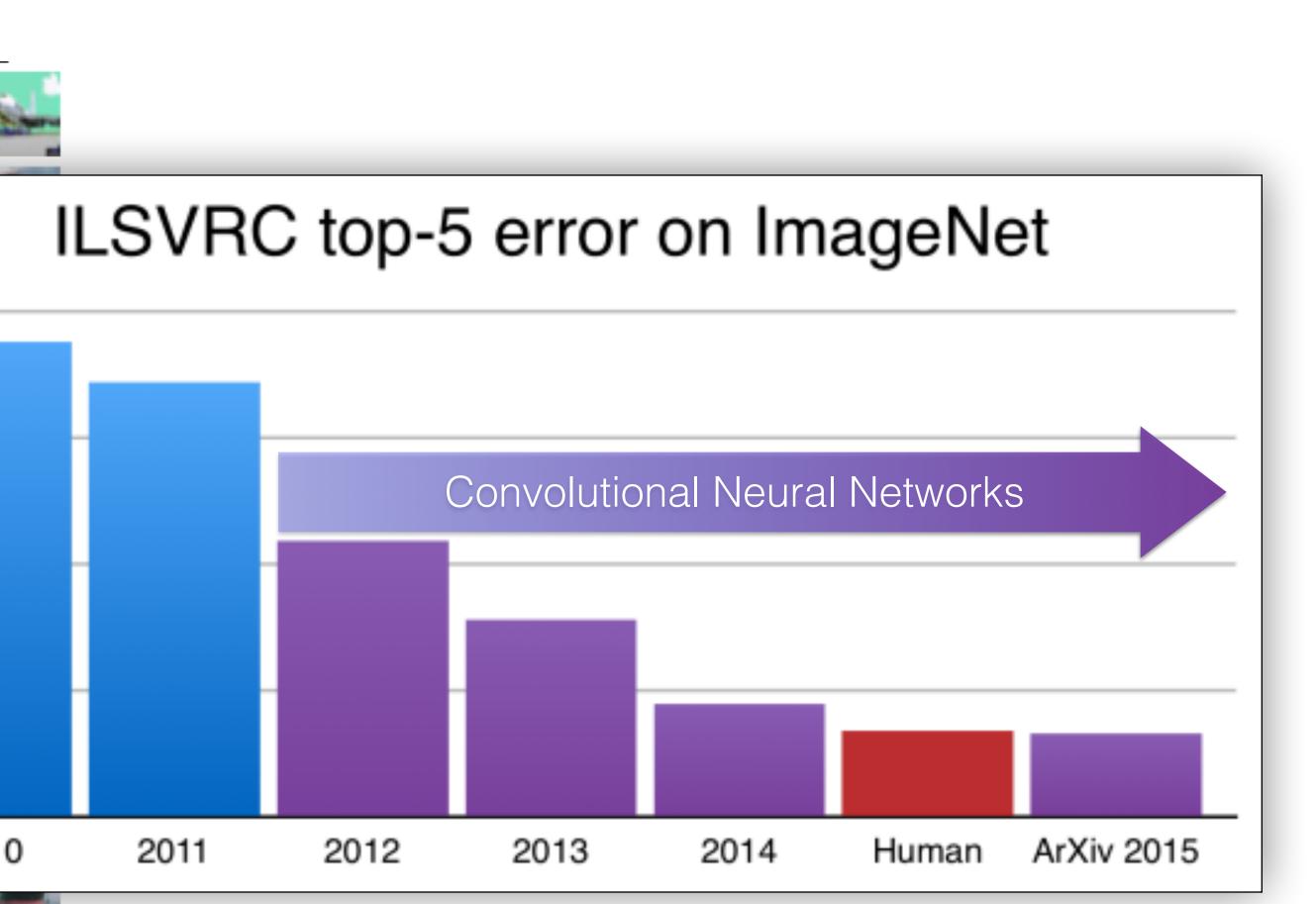
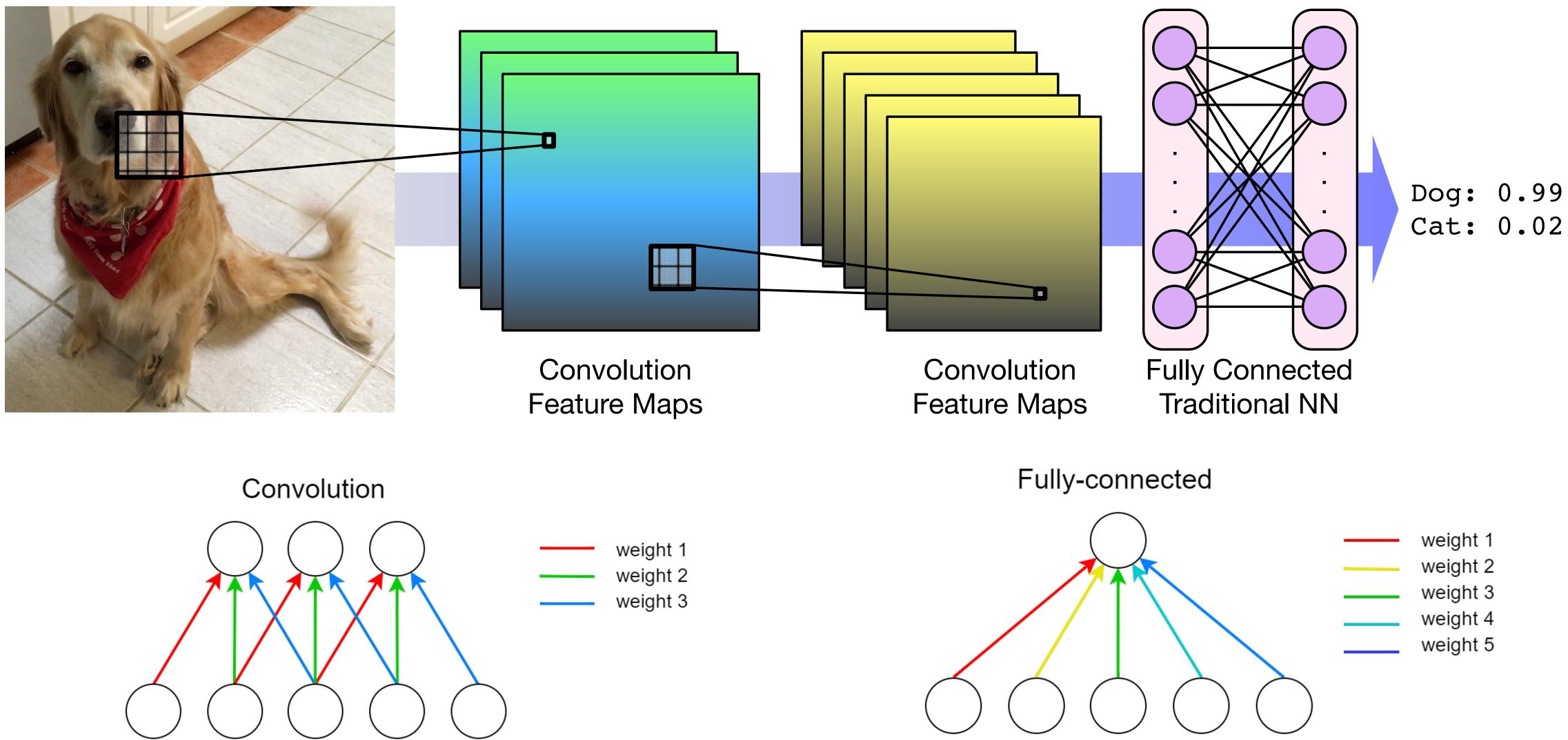


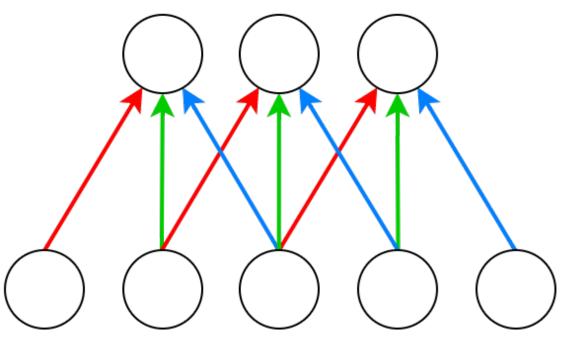
Image Recognition

										_
airplane	1	H.		X	*	*	2	-17	-	
automobile					-	The	-UV			
bird	S	5	2			4	N	30	_	
cat				aut.				22.5		
deer	1	48	X	RA		Y	1			
dog	17%	1	-	.	-		-	15		
frog	-7	reg.					1	7.5		
horse	- the	T.	P	3	m	171	-	0		
ship			100	+	MA			Ŭ		2010
truck	Contraction of the second		-						0	19



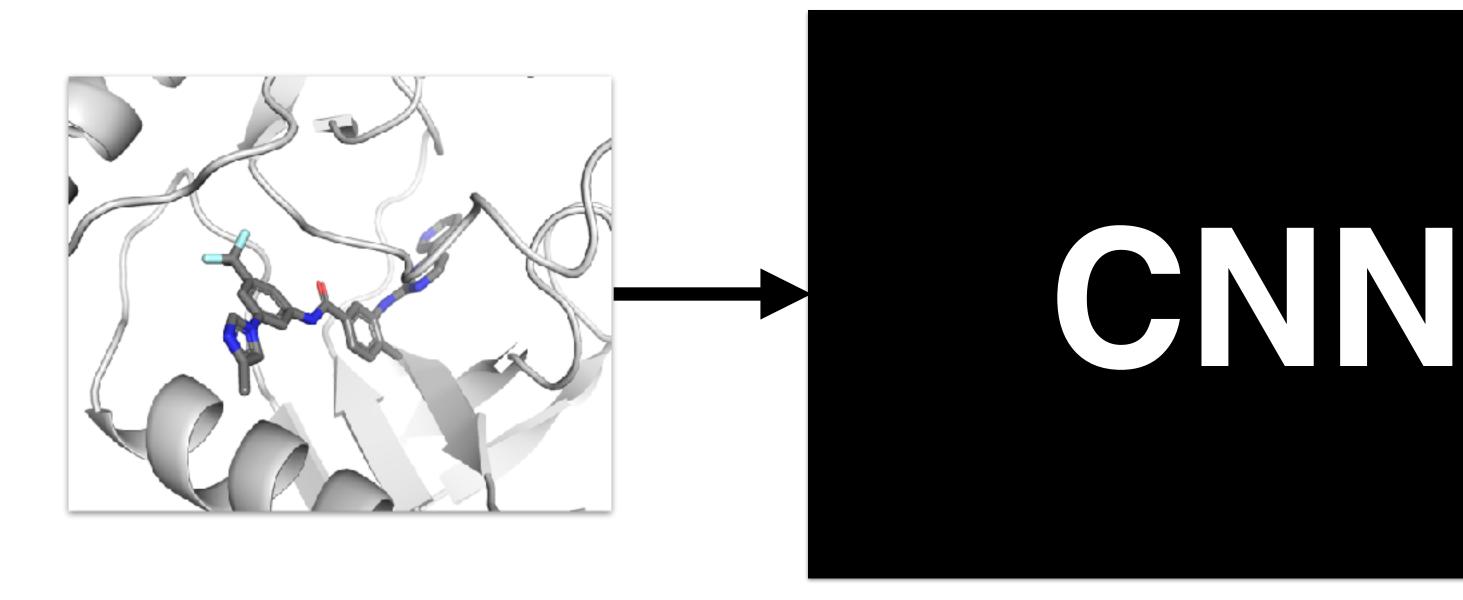
https://devblogs.nvidia.com





Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

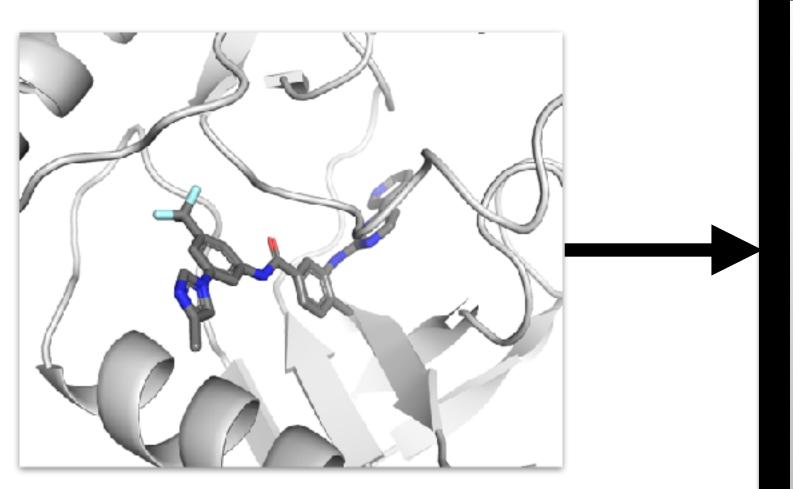


Pose Prediction

Binding Discrimination

Affinity Prediction

CNNs for Protein-Ligand Scoring



- Training

Input representation

Model optimization

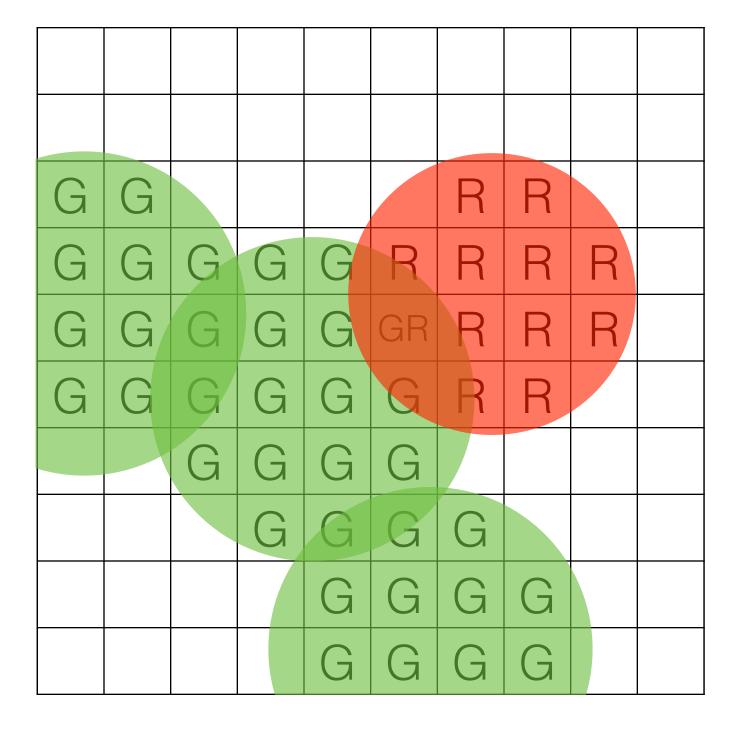
Visualize and Evaluation

Pose Prediction

Binding Discrimination

Affinity Prediction

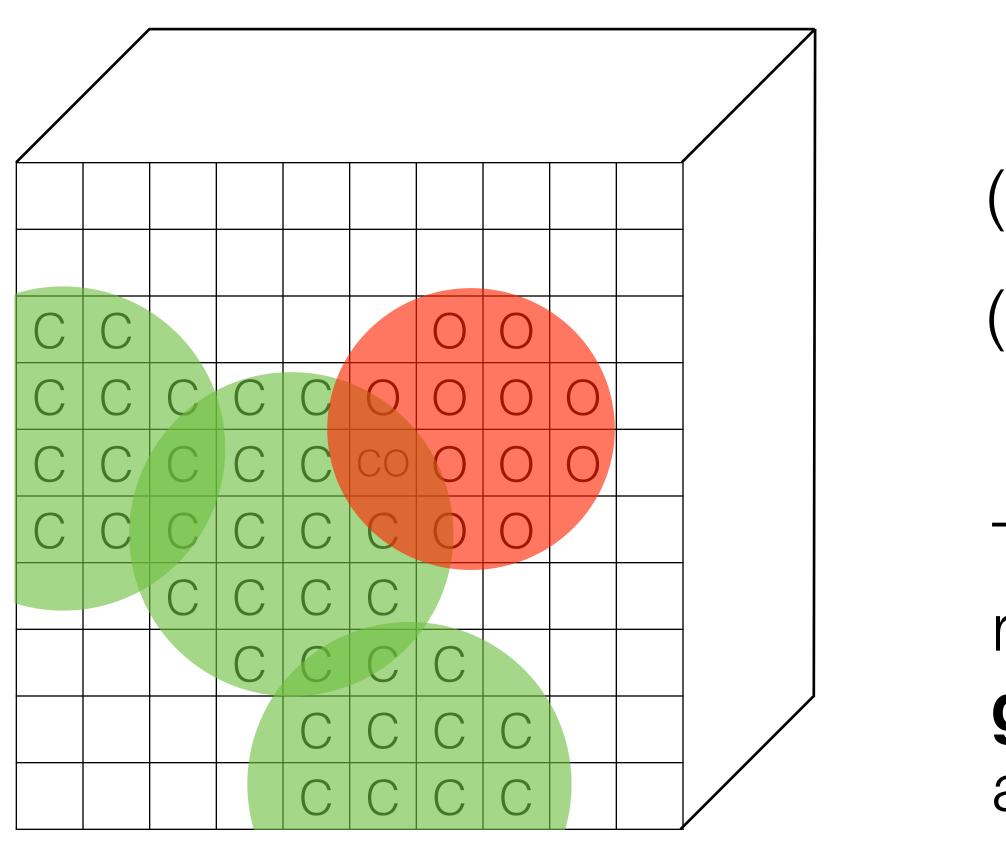
Protein-Ligand Representation



(R,G,B) pixel



Protein-Ligand Representation



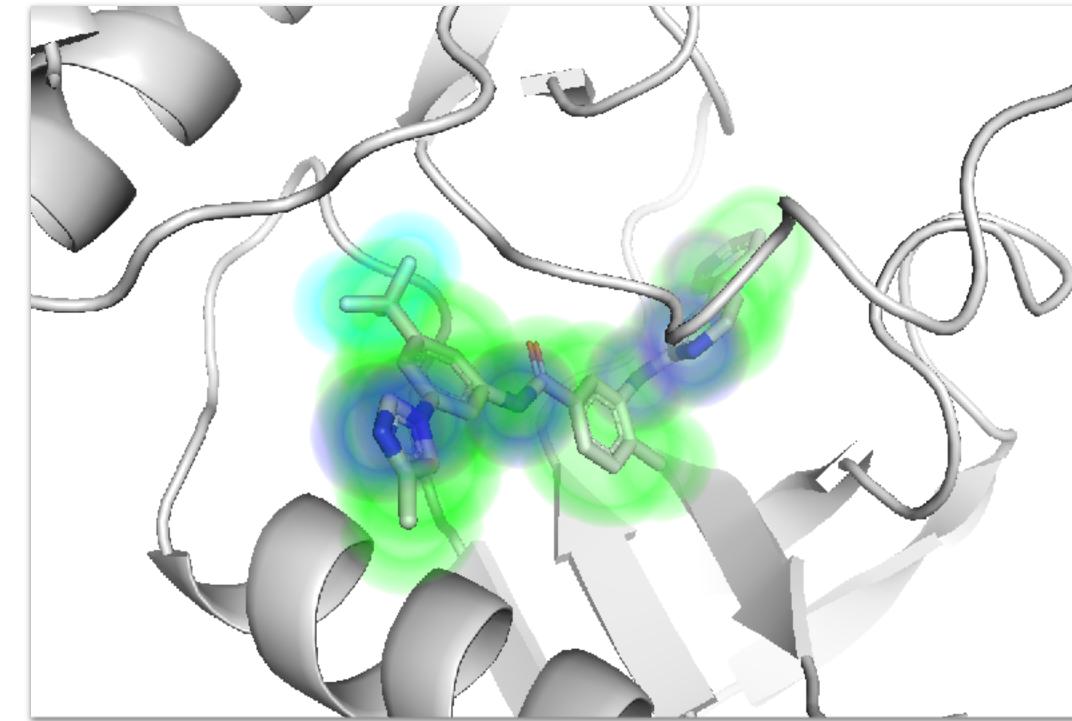
- (R,G,B) pixel \rightarrow
- (Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.



$$A(d,r) = \begin{cases} e^{-\frac{2d^2}{r^2}} & 0 \le d < r\\ \frac{4}{e^2r^2}d^2 - \frac{12}{e^2r}d + \frac{9}{e^2} & r \le d < 1.5r\\ 0 & d \ge 1.5r \end{cases}$$

Atom Density



Gaussian

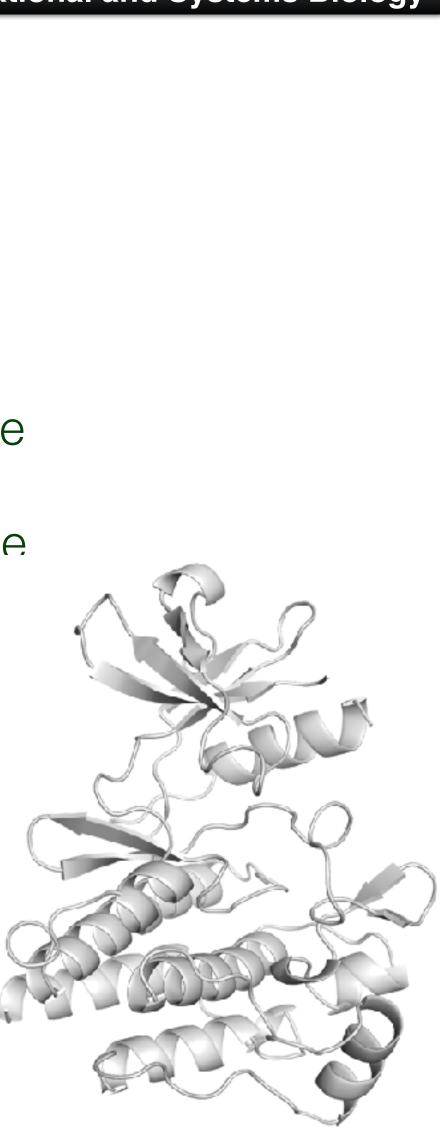
Atom Types

Ligand

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophobe Bromine Chlorine Fluorine lodine Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor Oxygen OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur SulfurAcceptor

Receptor

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophohe Calcium Iron Magnesium Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur Zinc



Training Data **Pose Prediction**

337 protein-ligand complexes

- curated for electron density
- diverse targets
- $<10\mu M$ affinity
- generate poses with Vina
 - 745 <2Å RMSD (actives)
 - 3251 >4Å RMSD (decoys)

4056 protein-ligand complexes

- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose
 - 8,688 <2Å RMSD (actives)
 - 76,743 >4Å RMSD (decoys)

Training Data

Binding Discrimination

102 targets

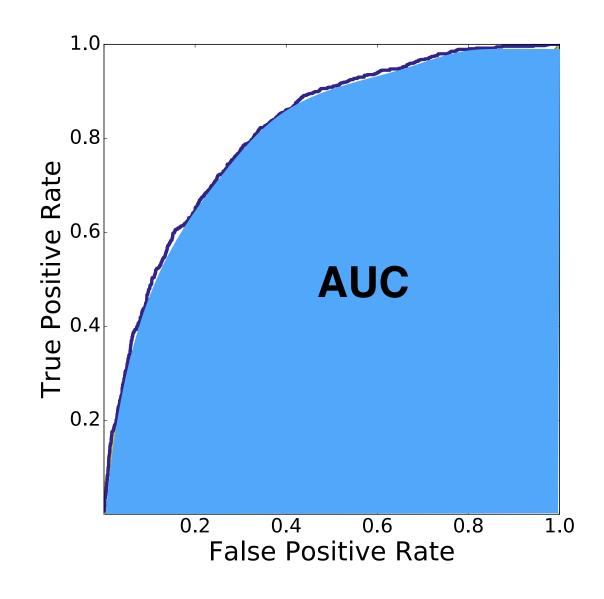
- 22,645 actives
- 1,407,145 decoys
- <10µM affinity
- true poses unknown
- trust docked poses

Affinity Prediction

- 8,688 low RMSD poses
- assign known affinity
- regression problem

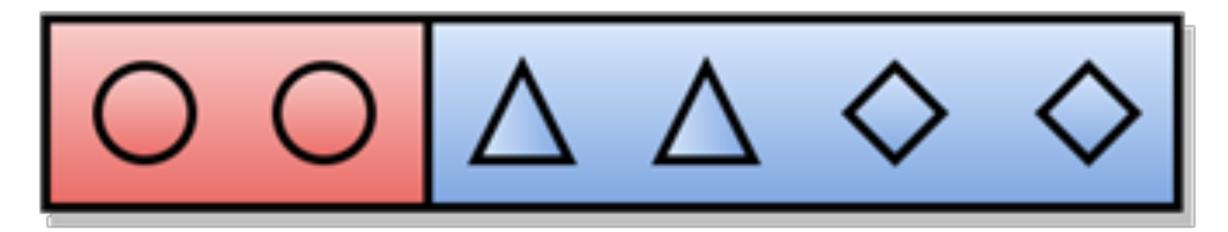
CSAR: >90% similar targets kept in same fold

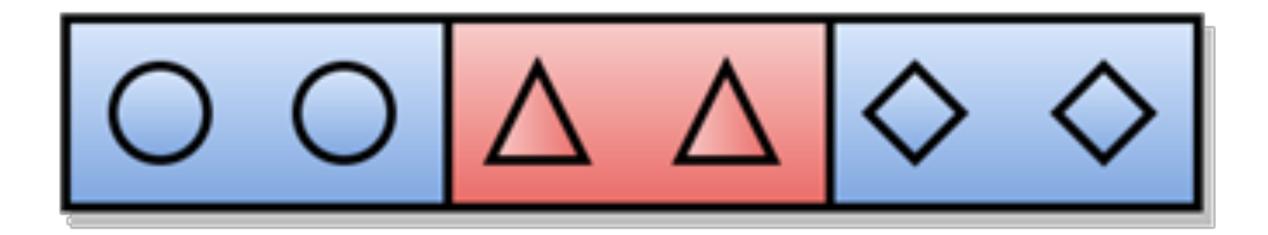
DUD-E & PDBbind: >80% similar targets kept in same fold

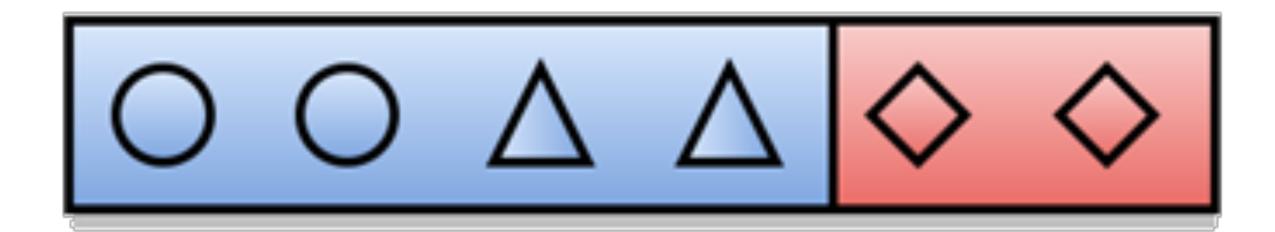


Model Evaluation

Clustered Cross-validation

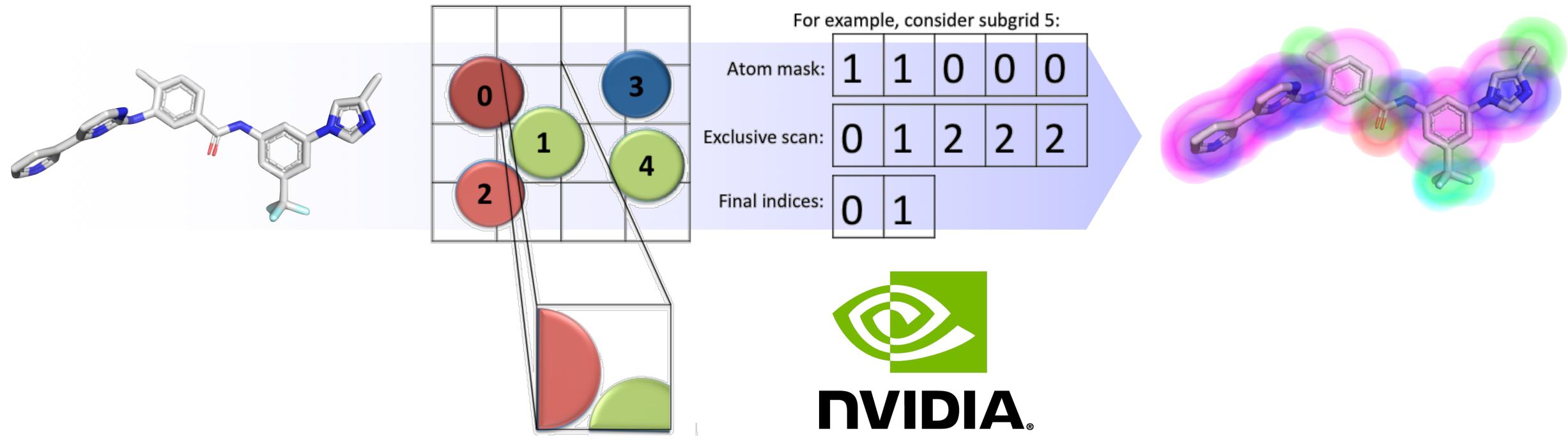






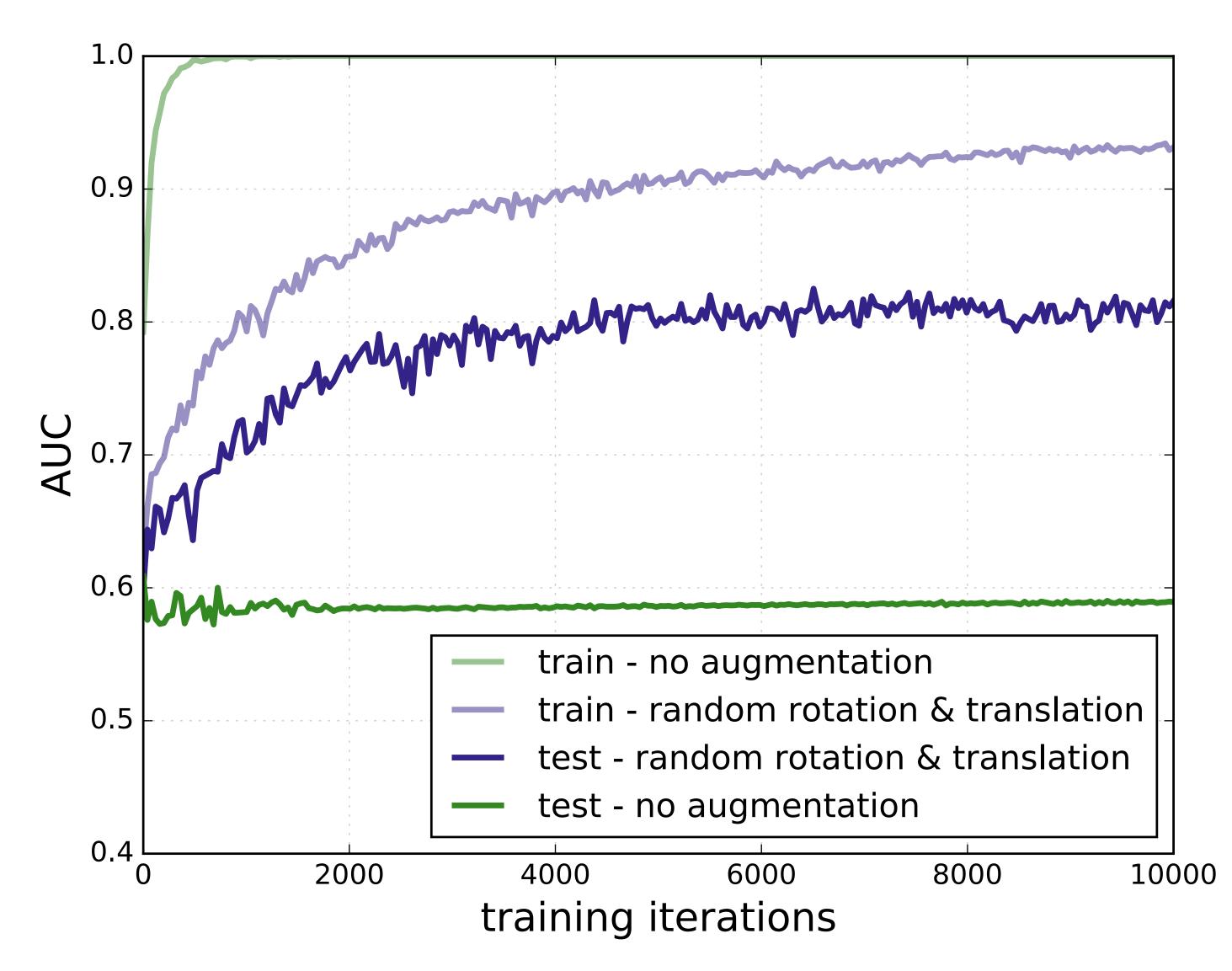
Custom MolGridDataLayer

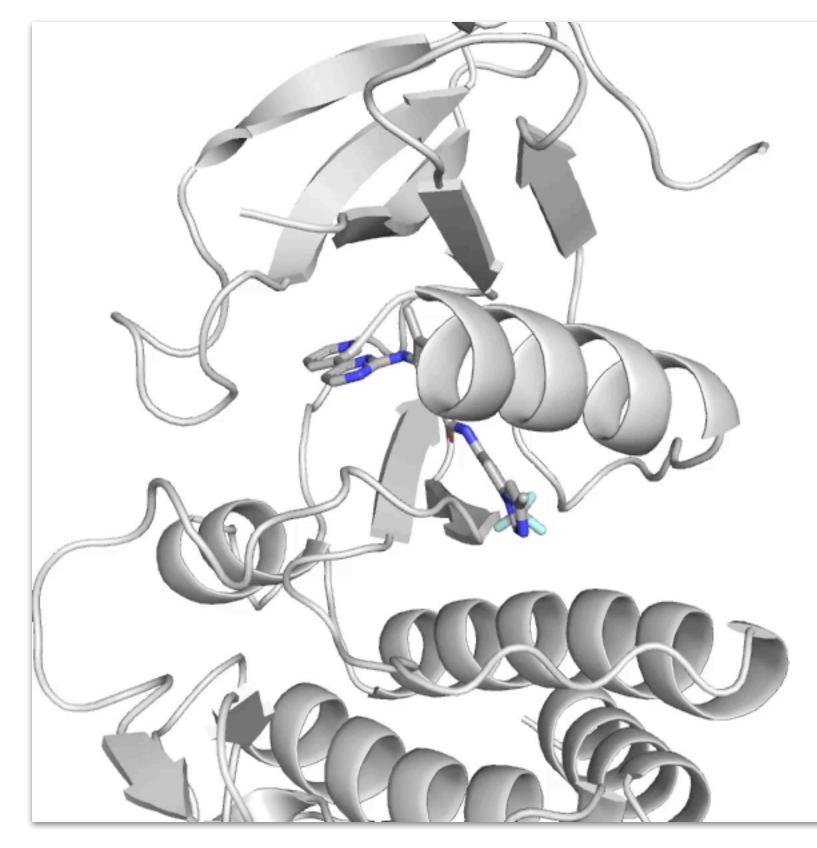
Parallelize over *atoms* to obtain a mask of atoms that overlap each grid region Use exclusive scan to obtain a list of atom indices from the mask Parallelize over *grid points*, using reduced atom list to avoid O(N_{atoms}) check



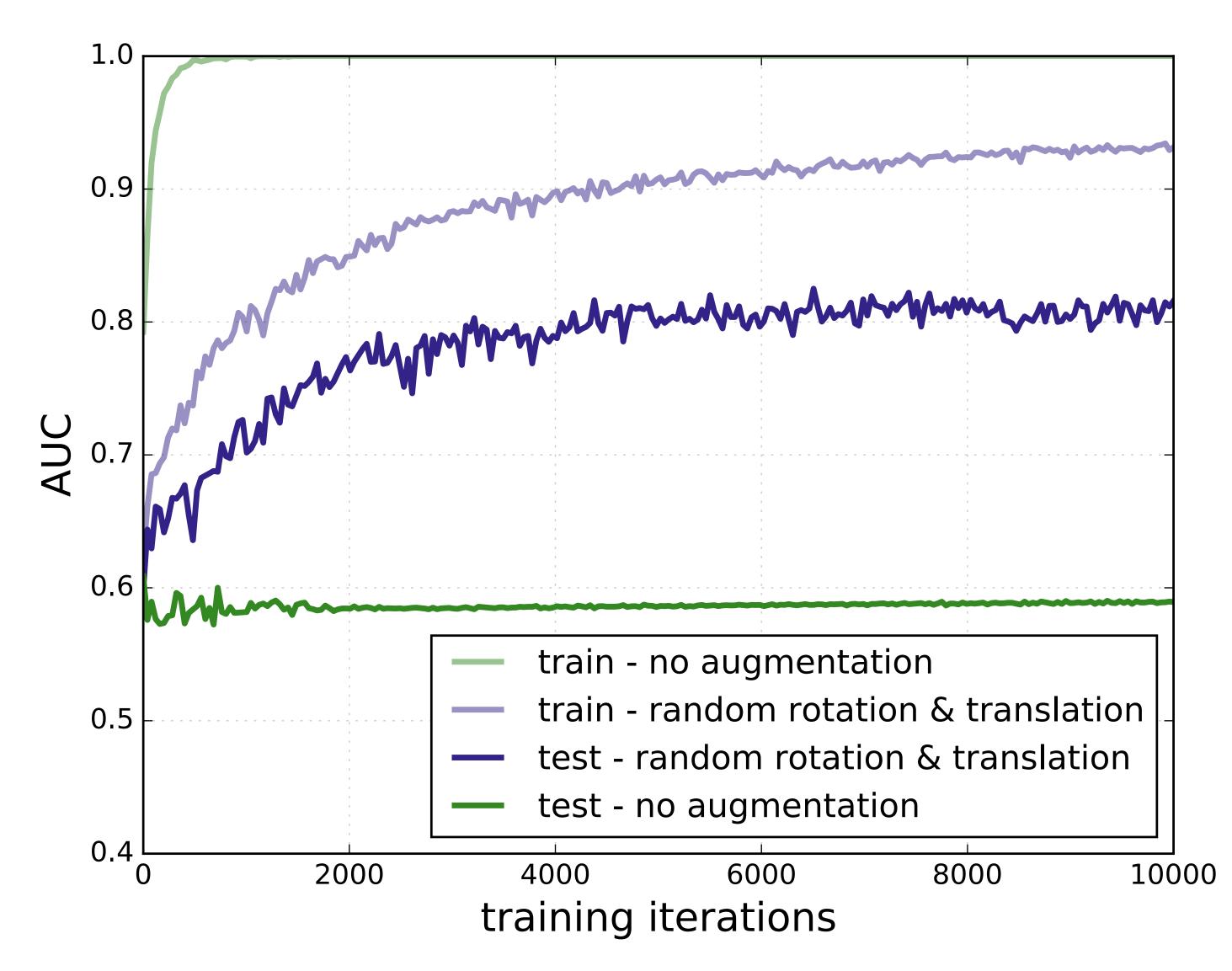
Model Training

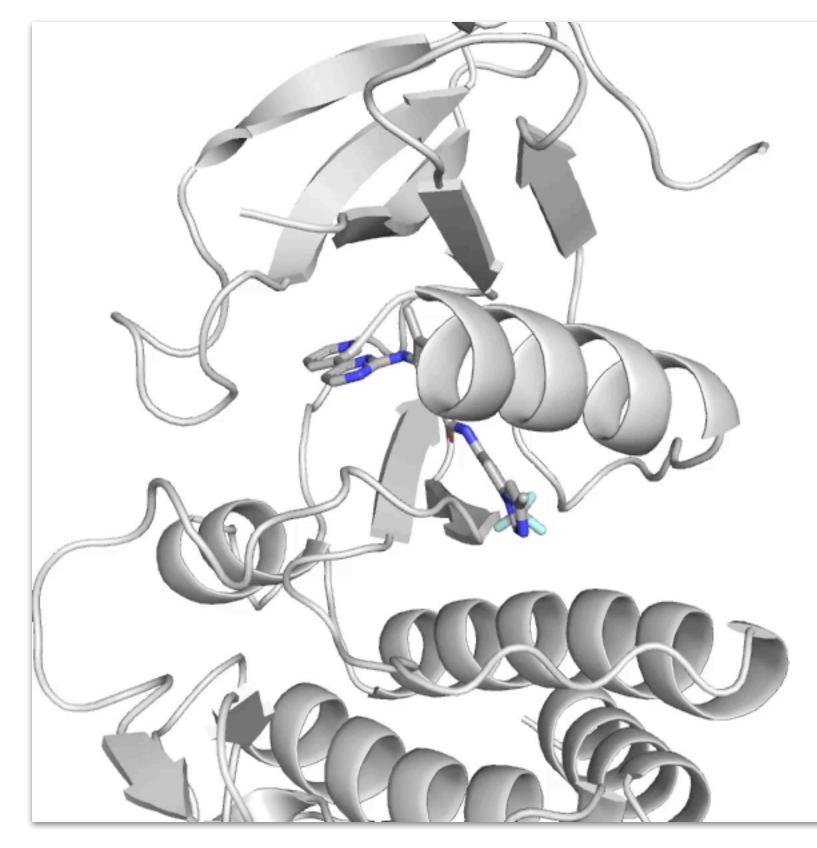
Data Augmentation



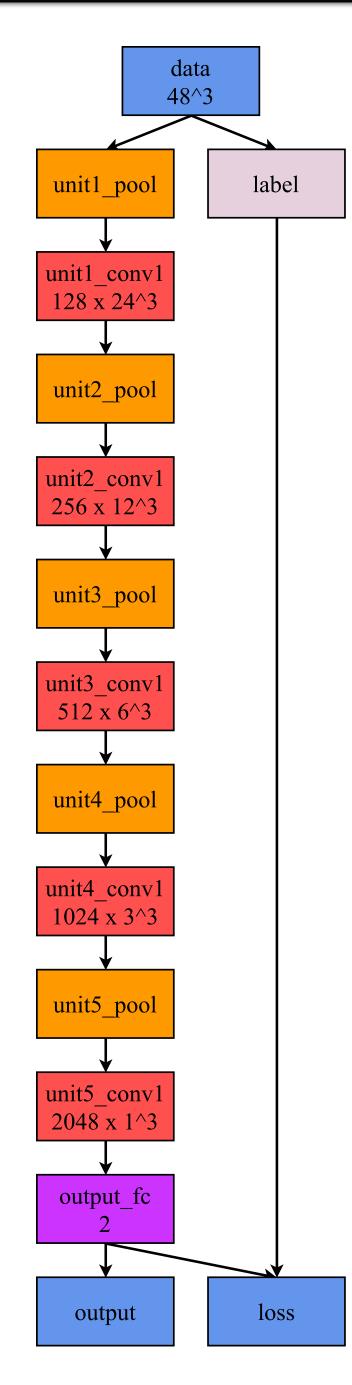


Data Augmentation





University of Pittsburgh



Model Optimization

Atom Types

- Vina (34)
- element-only (18)
- ligand-protein (2)

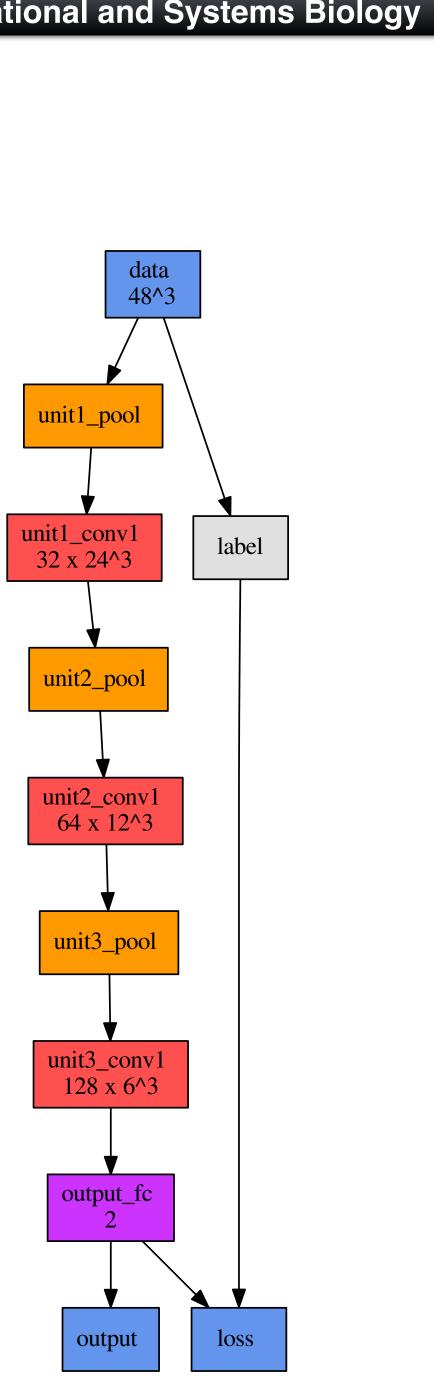
Atom Density Type

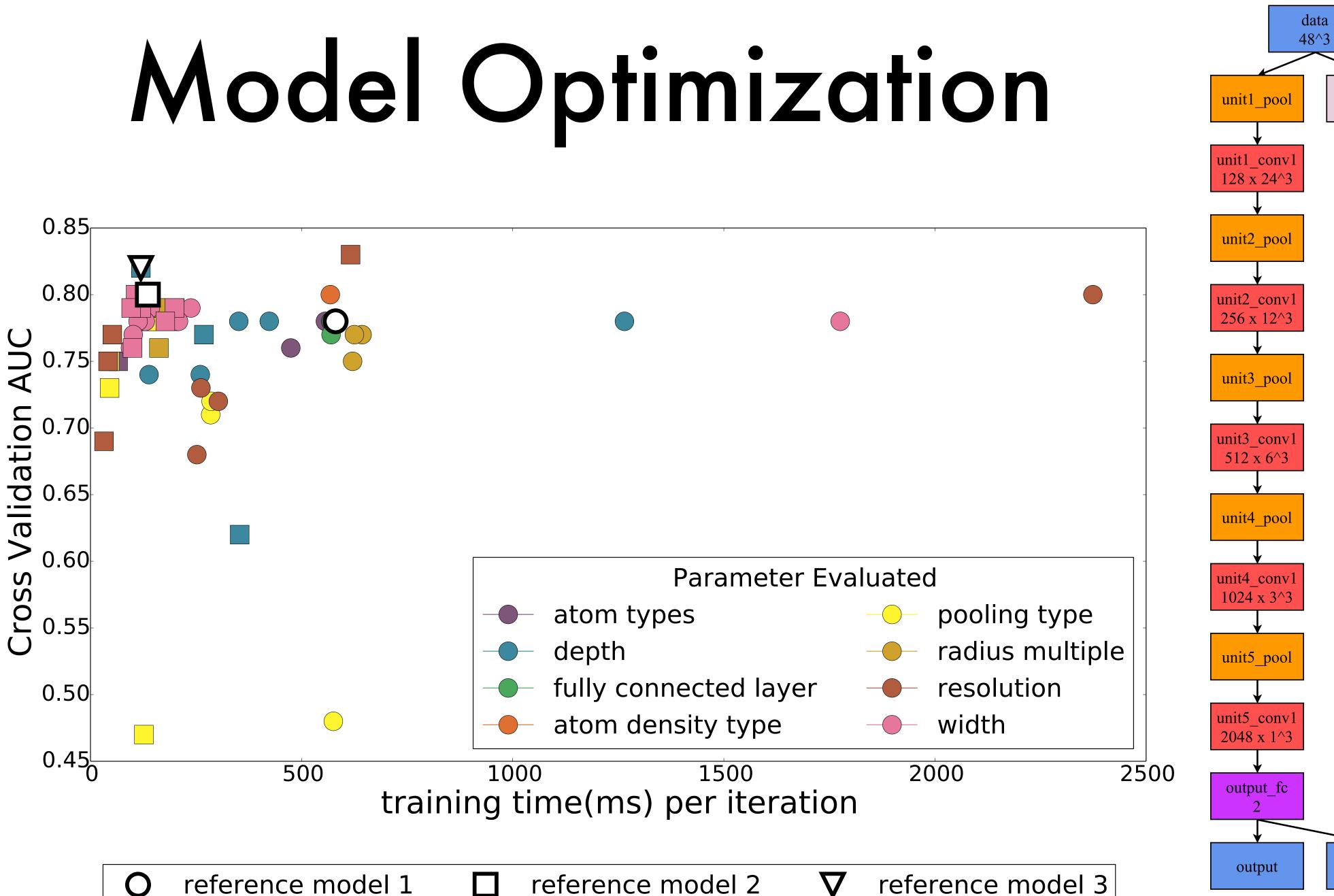
- Boolean
- Gaussian

Radius Multiple Resolution

Pooling Depth Width

Fully Connected Layers





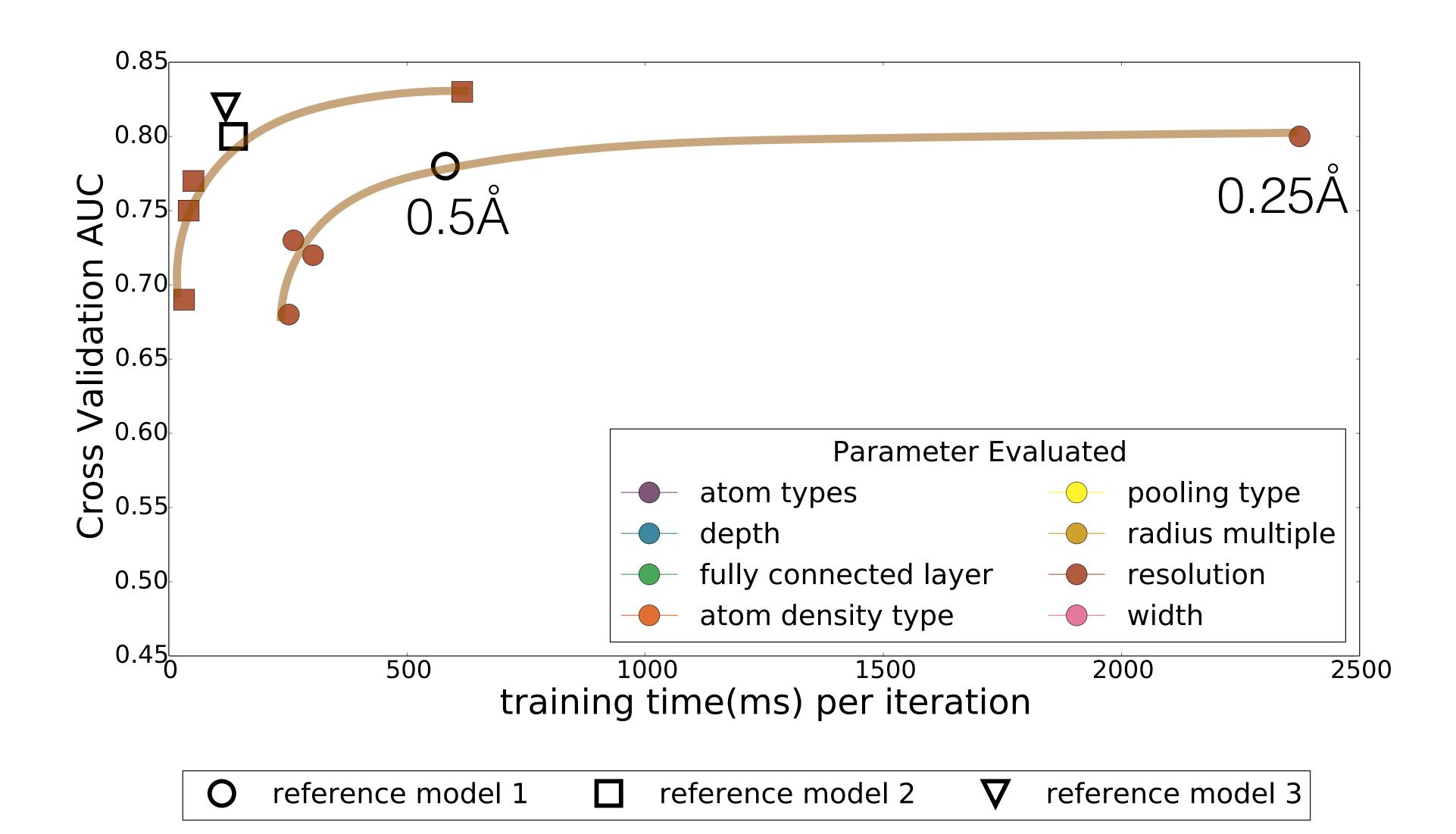
Computational and Systems Biology

University of Pittsburgh

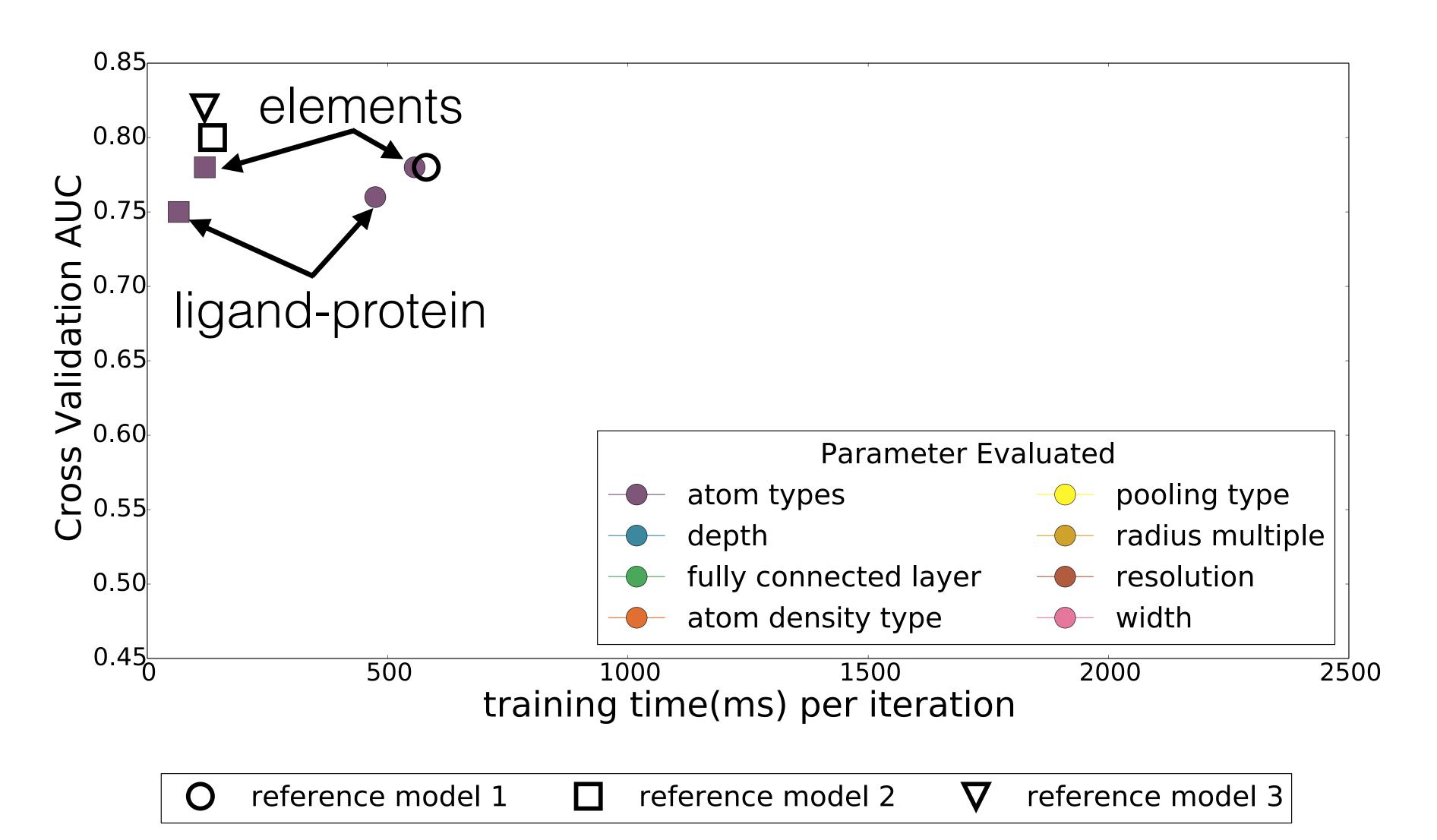


Computational and Systems Biology

Grid Resolution

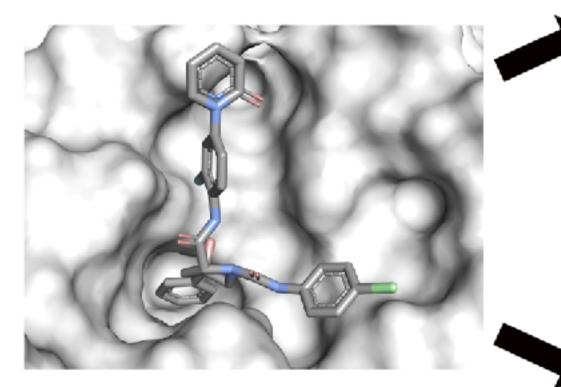


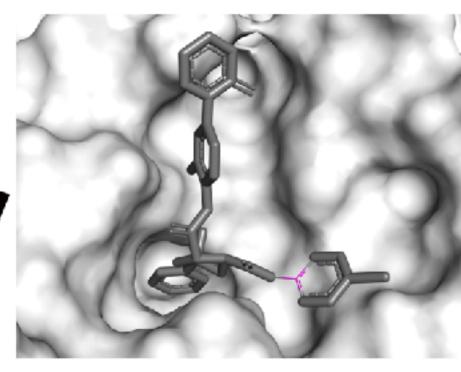
Atom Types

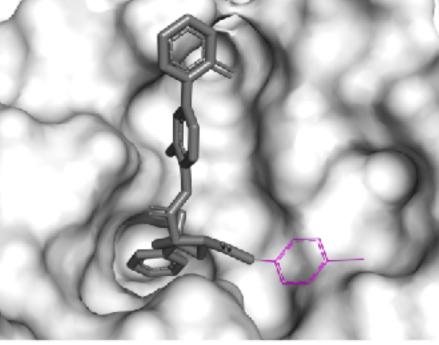


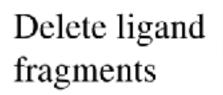
Visualization

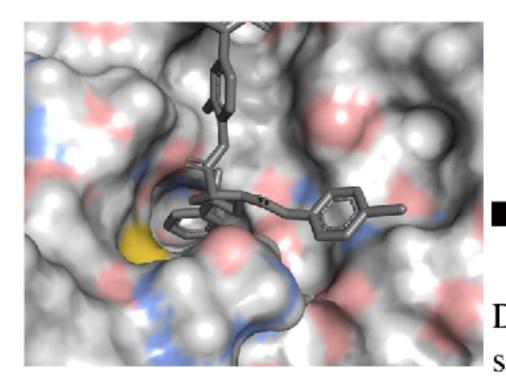
Delete single ligand atoms



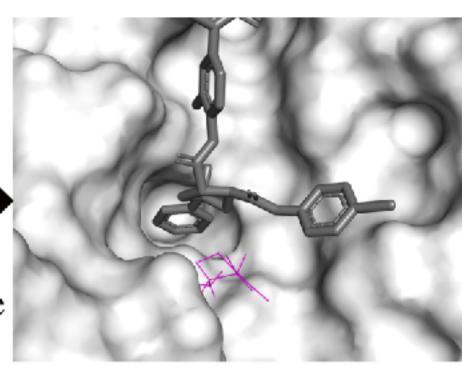


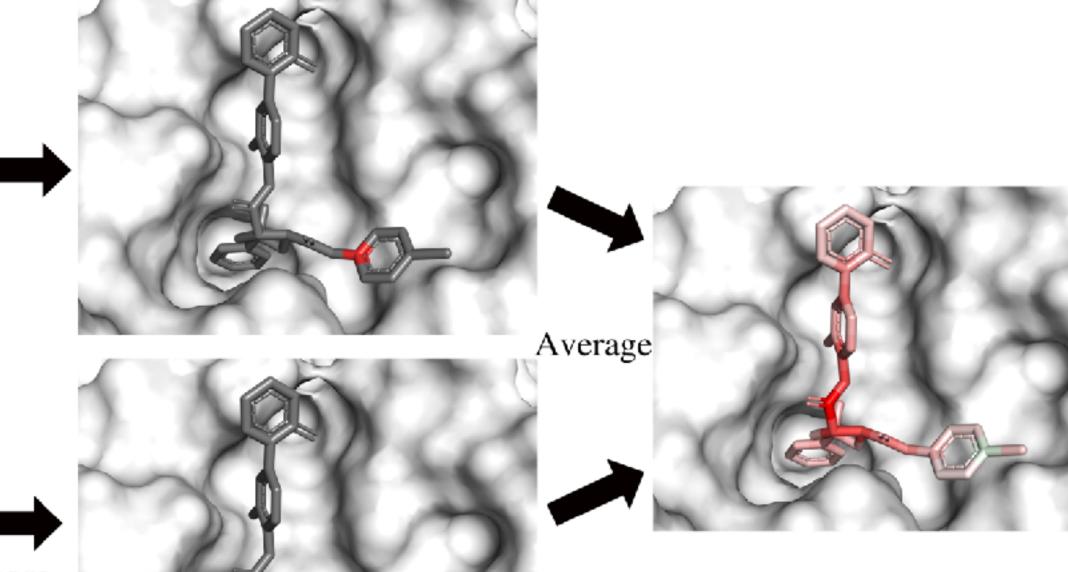




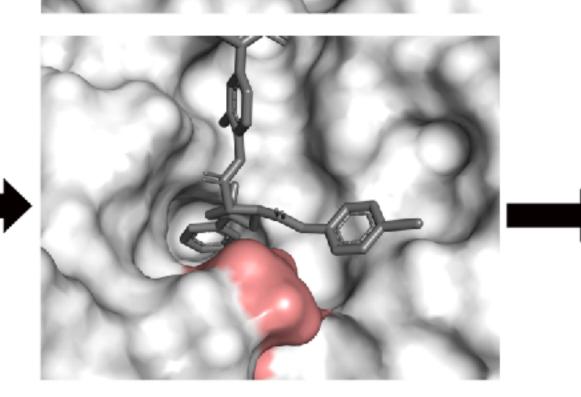


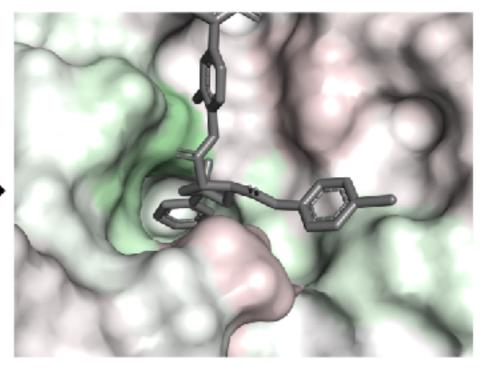
Delete single residues



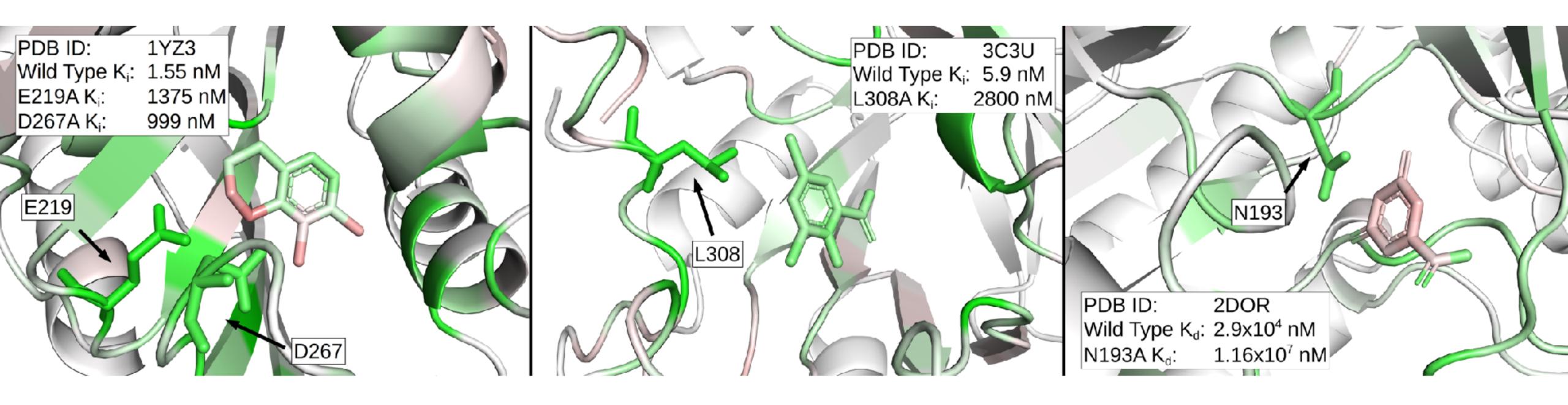


Score



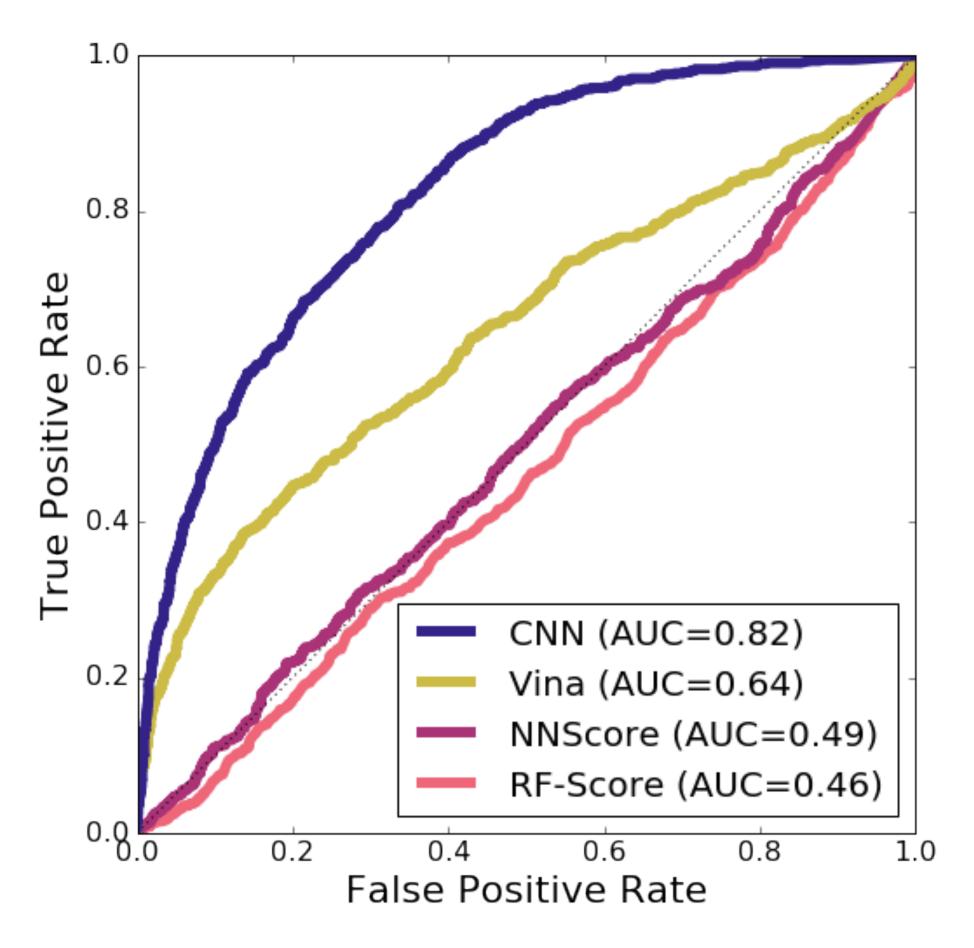


Visualizing Enzymes

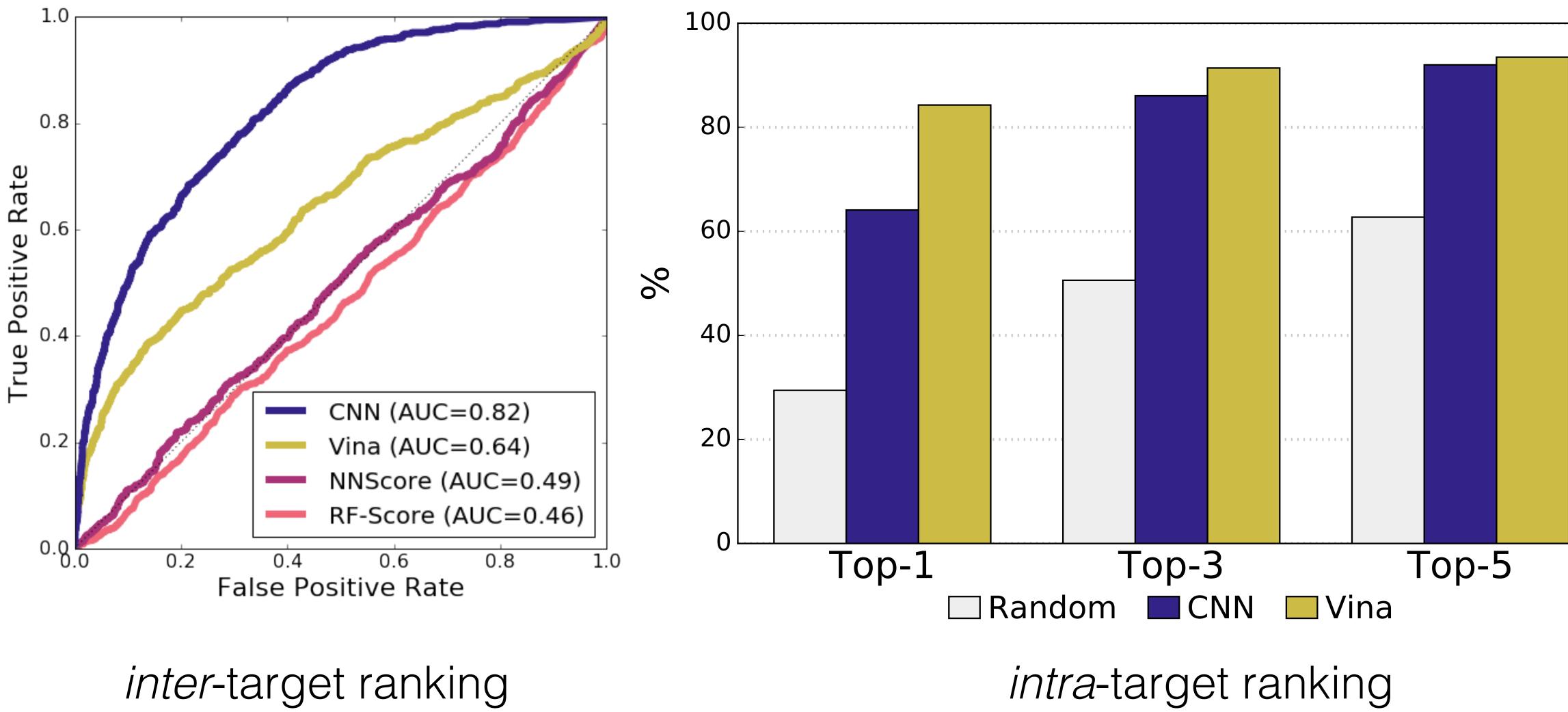


Cross-Validation Evaluation

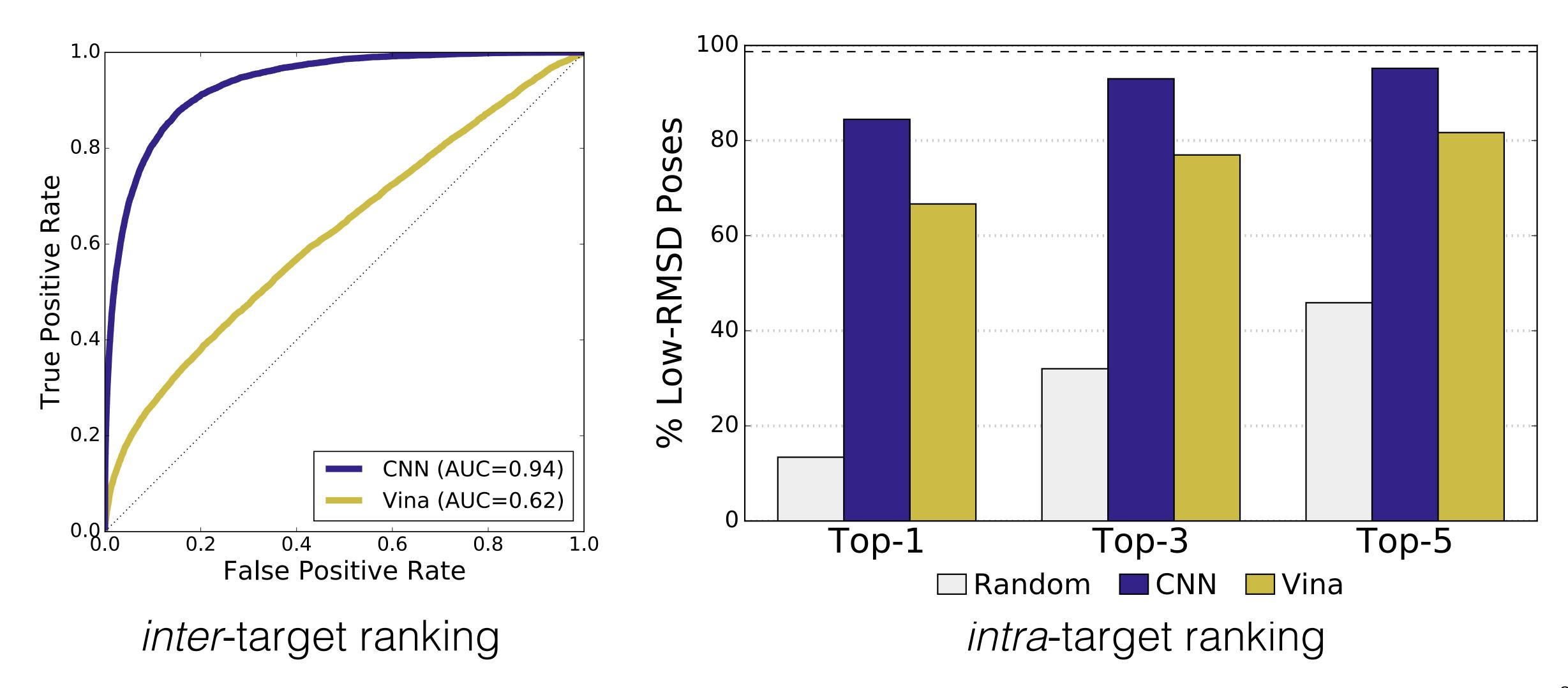
Pose Prediction (CSAR)



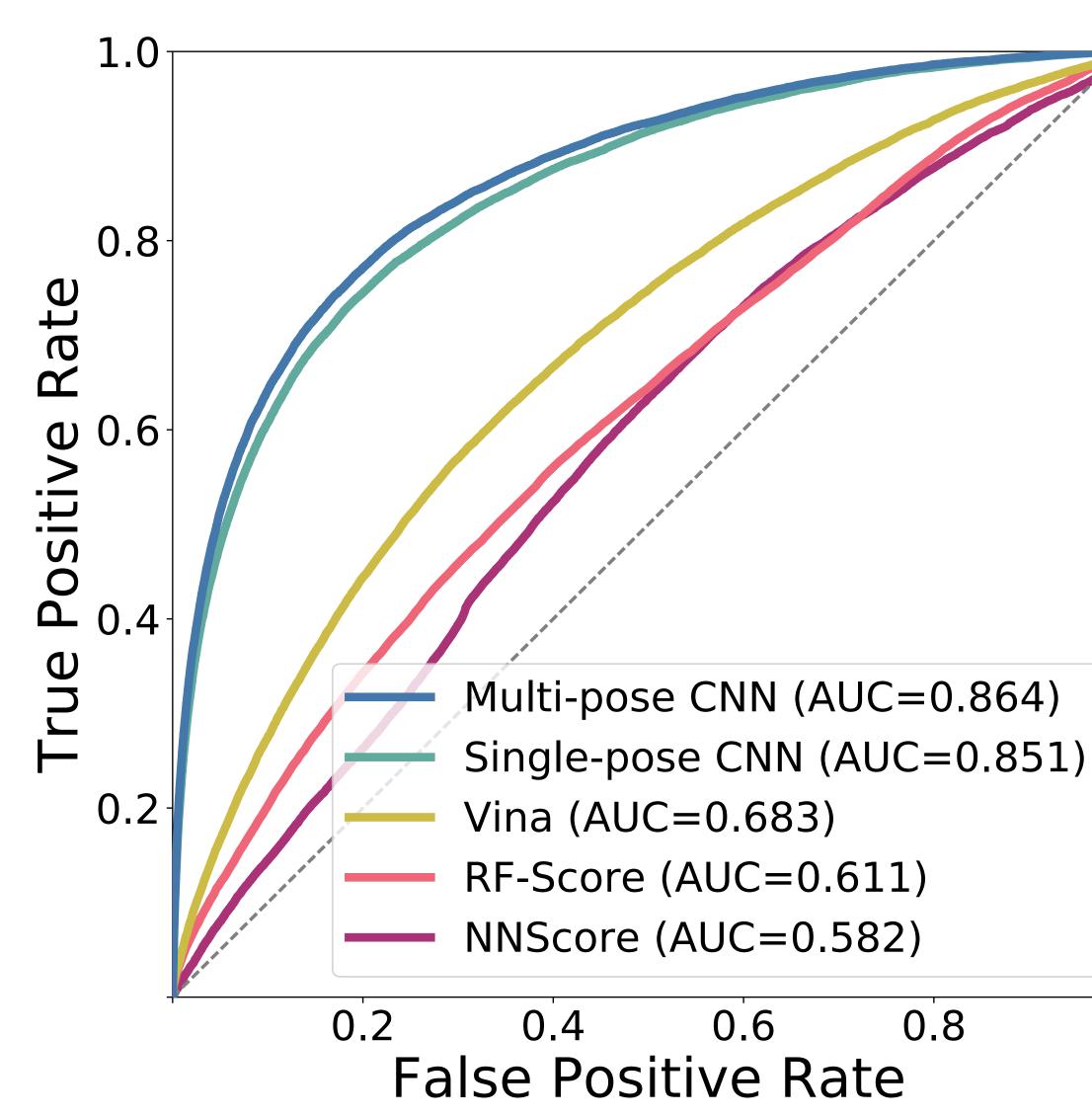
Pose Prediction (CSAR)



Pose Prediction (PDBbind)



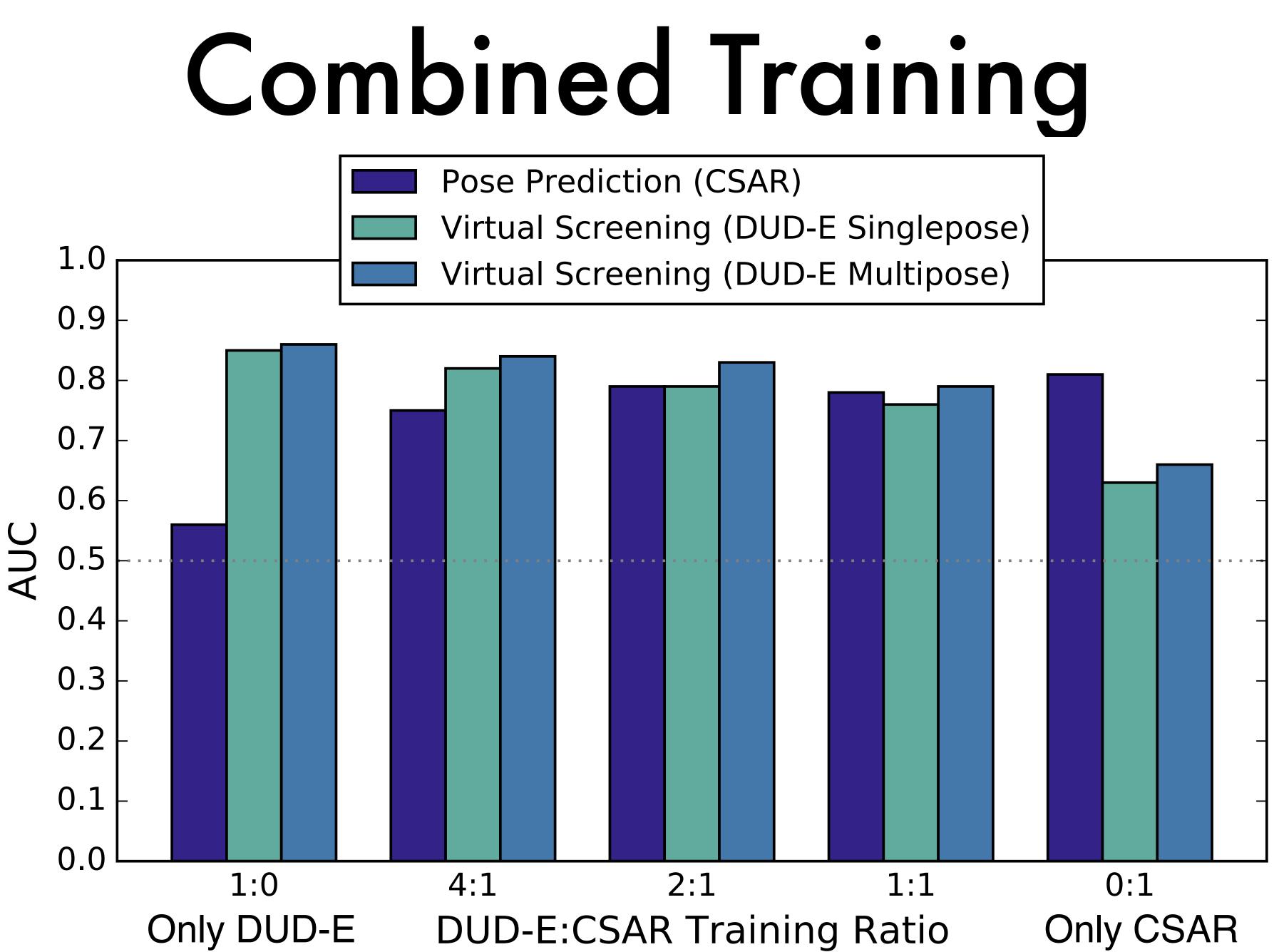
Binding Determination



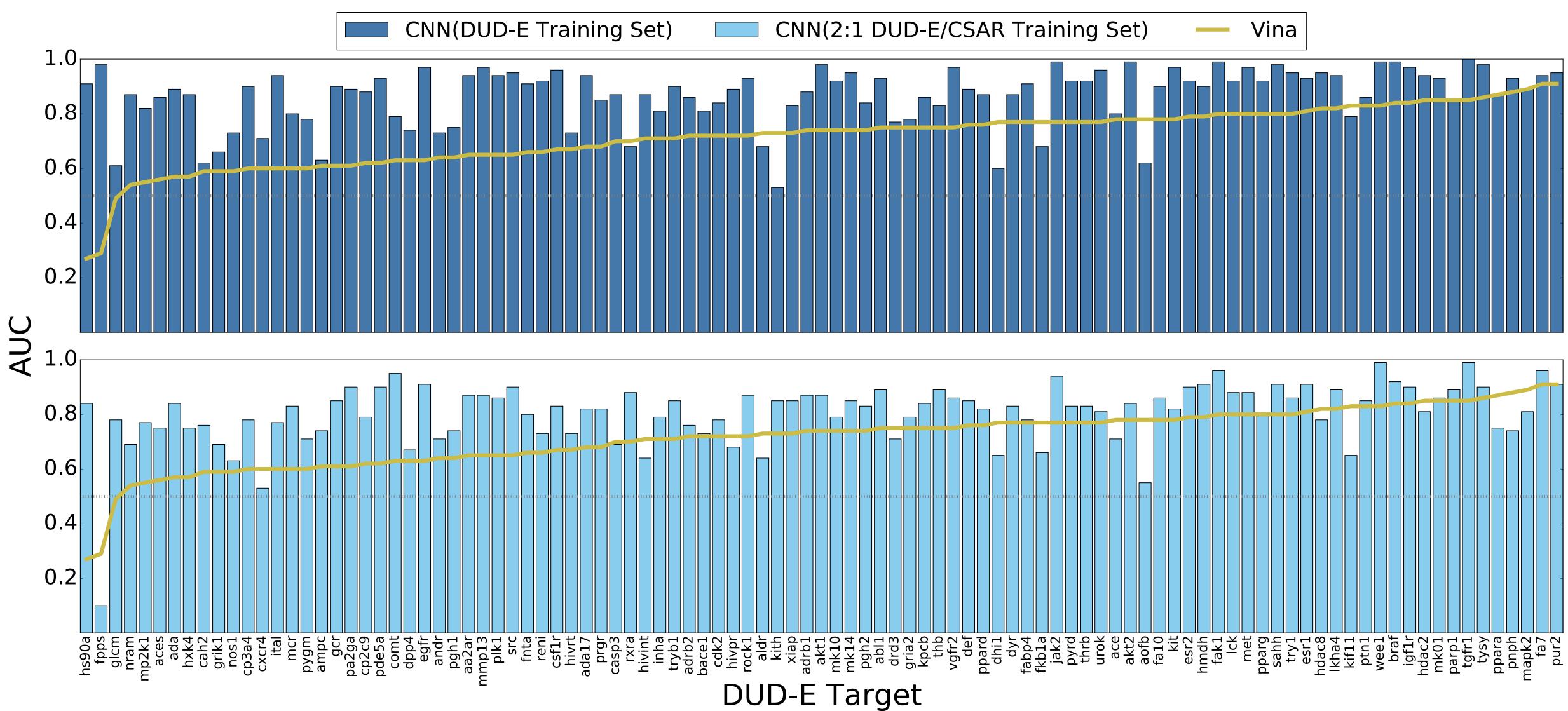
E D

102 targets

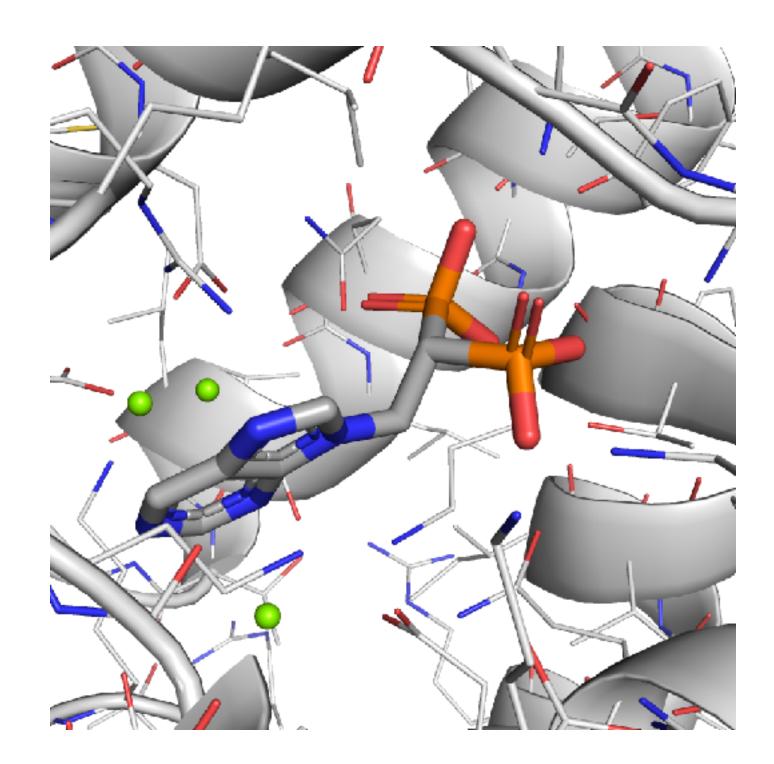
- 22,645 actives
- 1,407,145 decoys
- $<10\mu M$ affinity
- true poses unknown
- use top docked pose



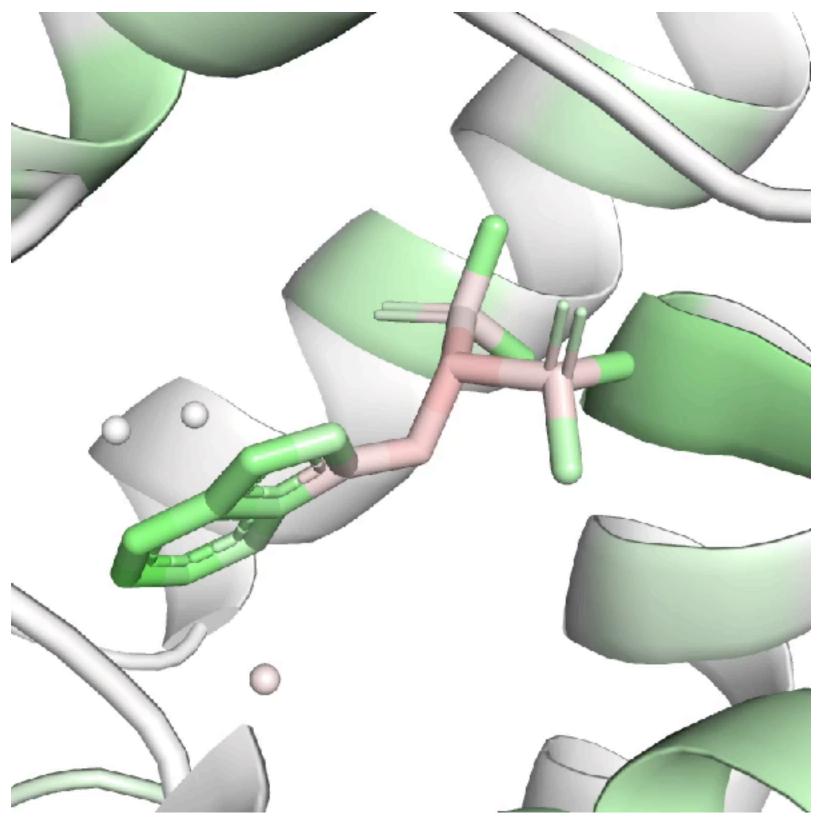
Binding Determination



fpps (farnesyl diphosphate synthase)

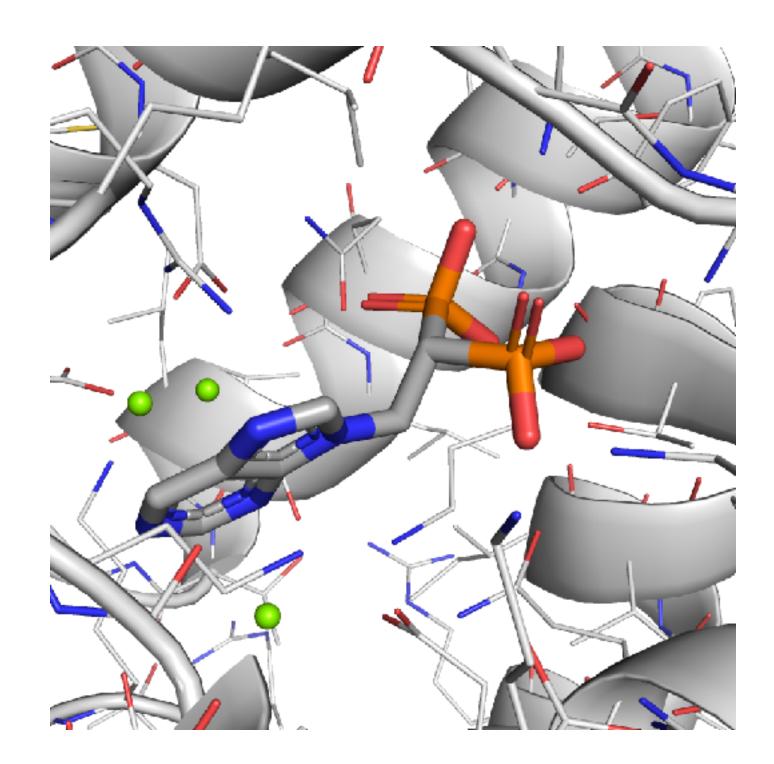


CHEMBL457424 Top Vina Pose (-8.2 kcal/mol)

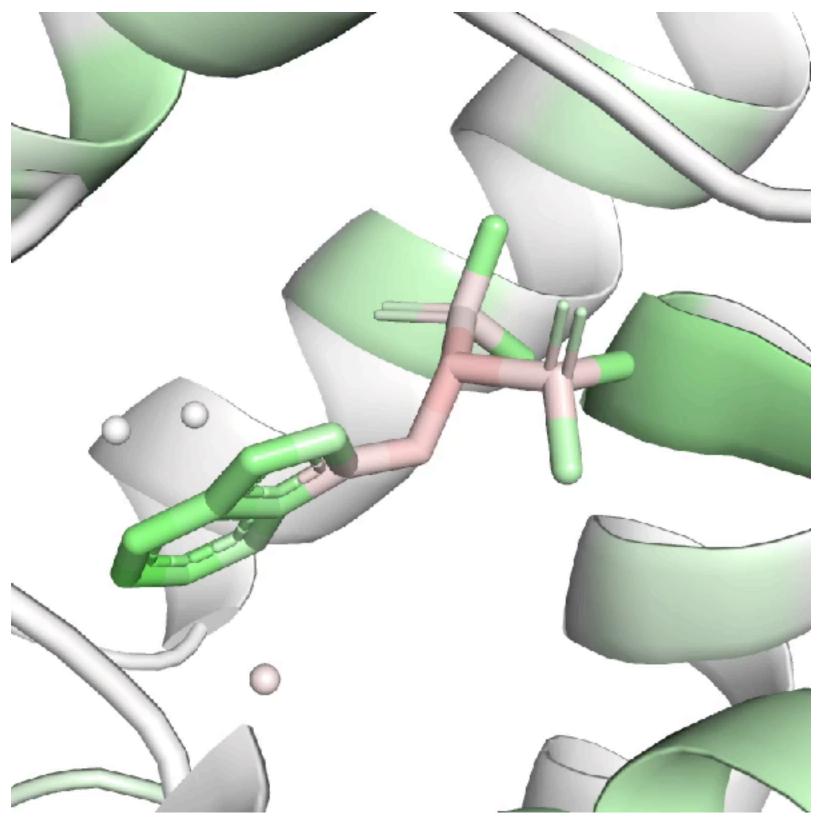


DUD-E Training Set $Score = 0.93 \pm 0.03$

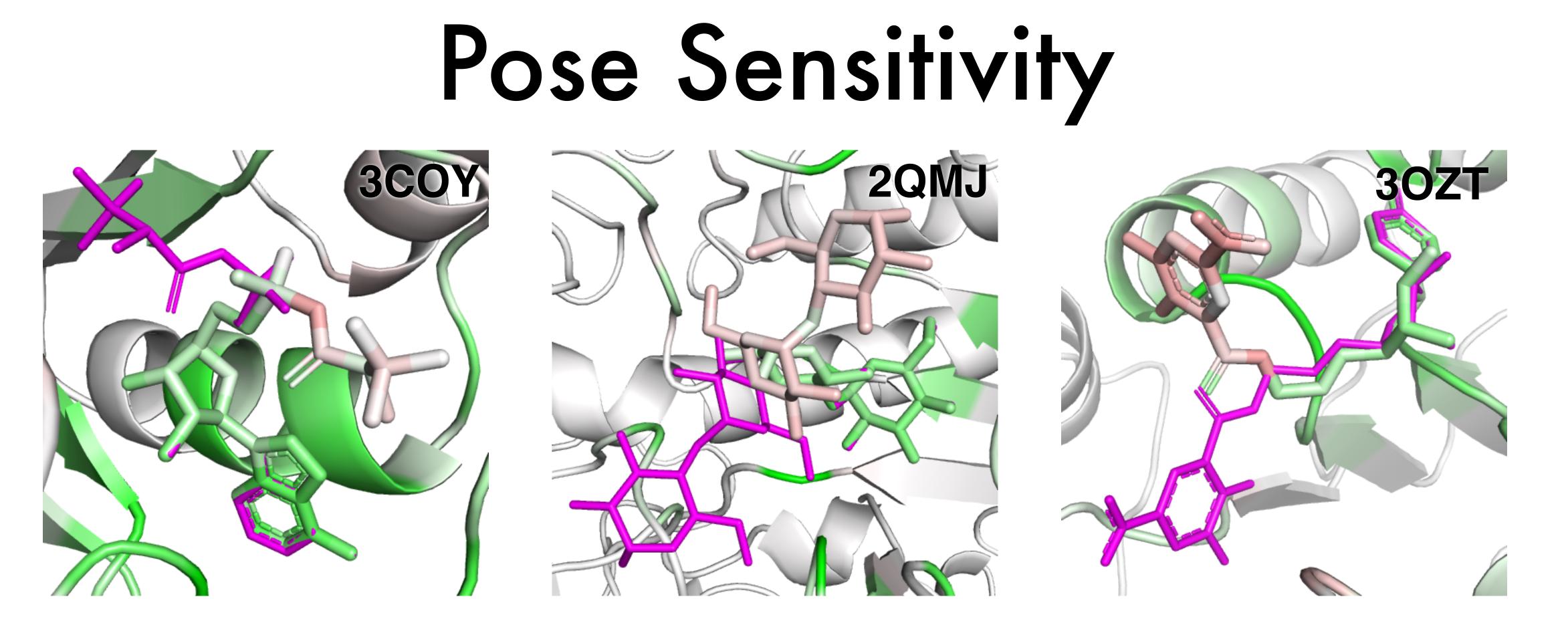
fpps (farnesyl diphosphate synthase)



CHEMBL457424 Top Vina Pose (-8.2 kcal/mol)

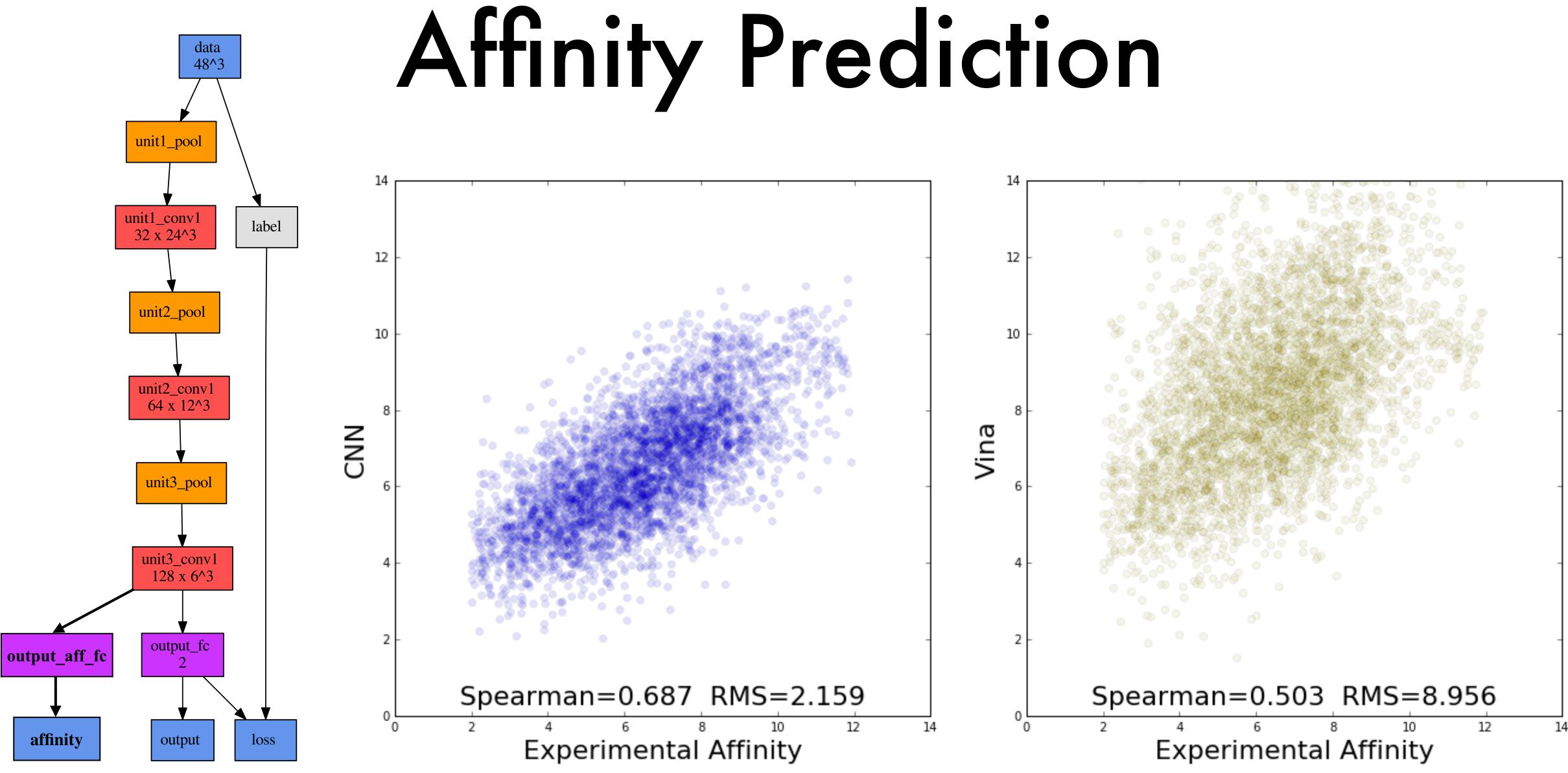


DUD-E Training Set $Score = 0.93 \pm 0.03$



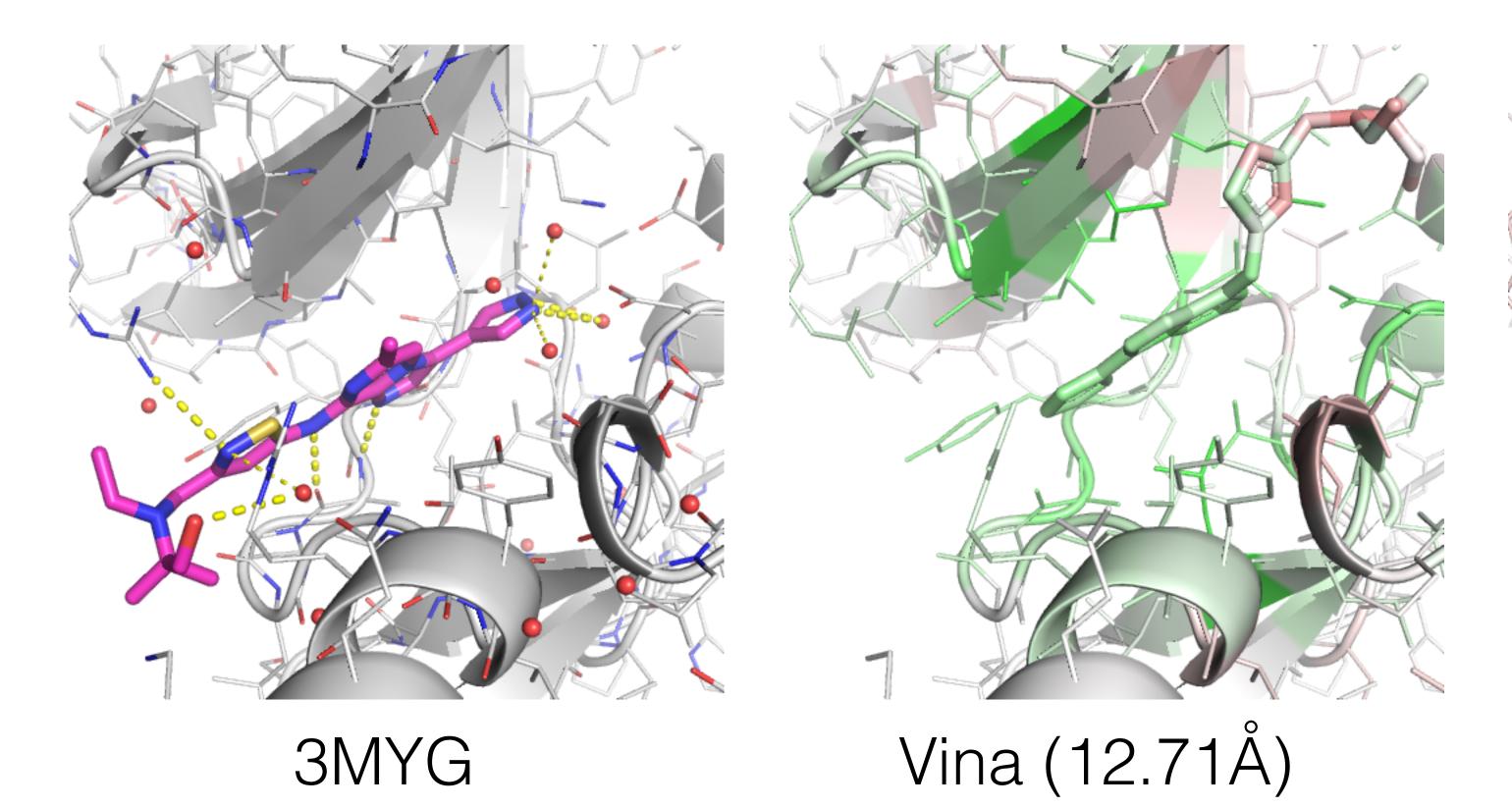
Partially Aligned Poses Combined 2:1 Training Set

University of Pittsburgh

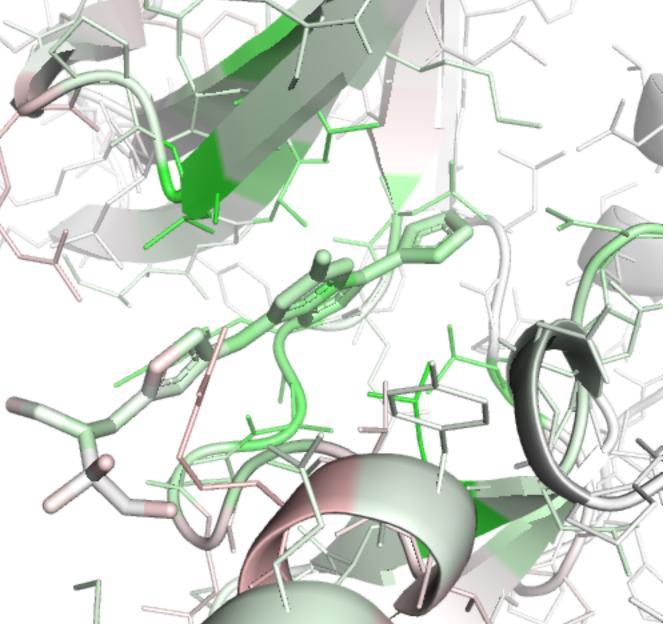


Examples

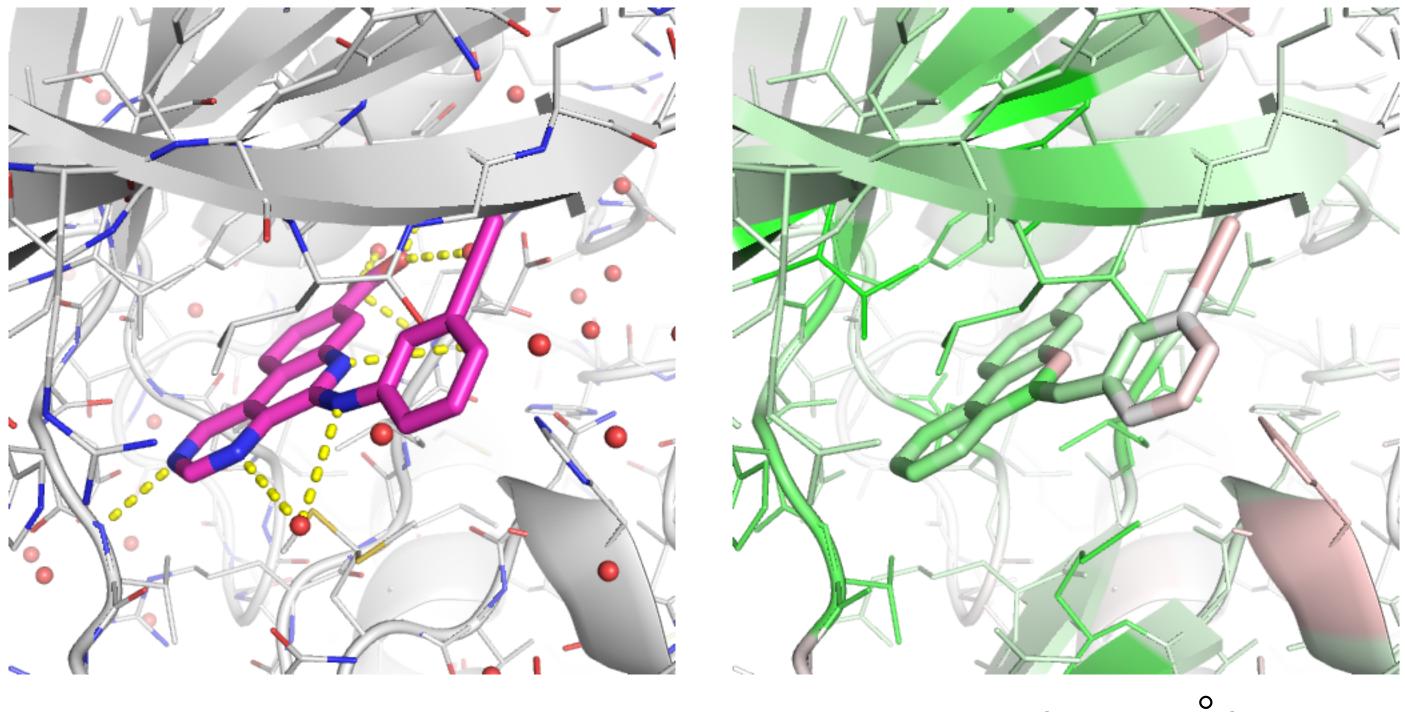
••



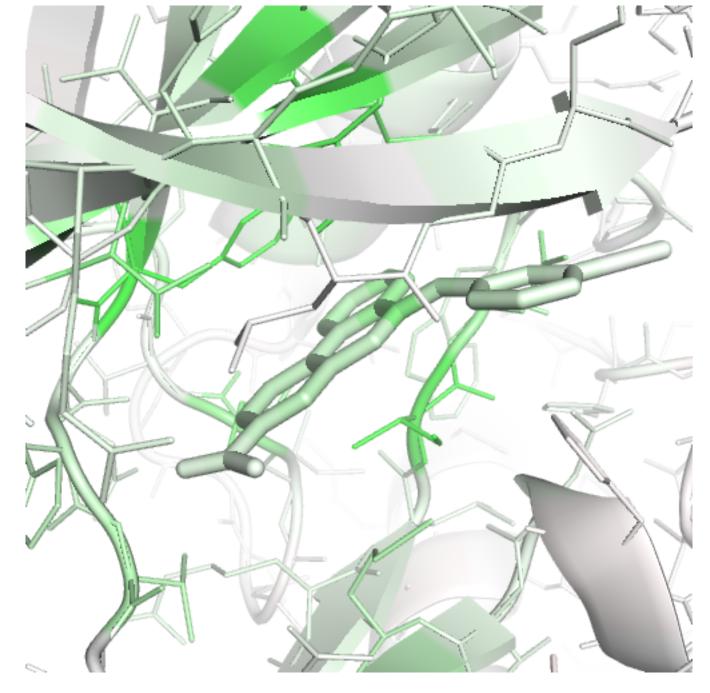
CNN (0.96Å)



Examples

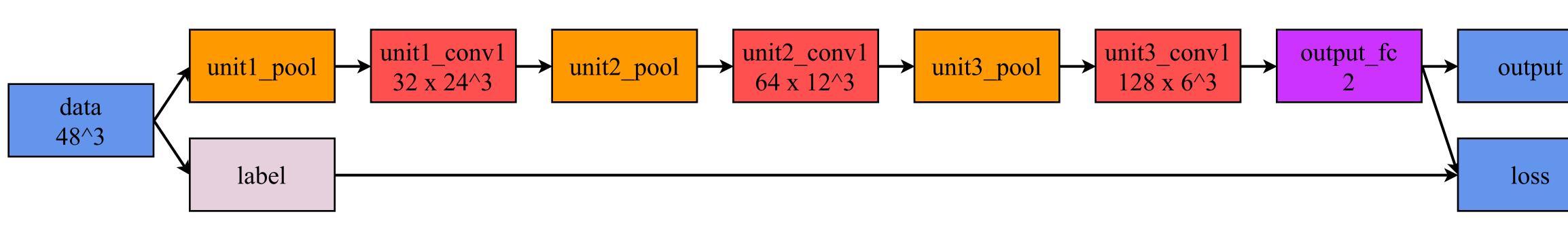


3PE2

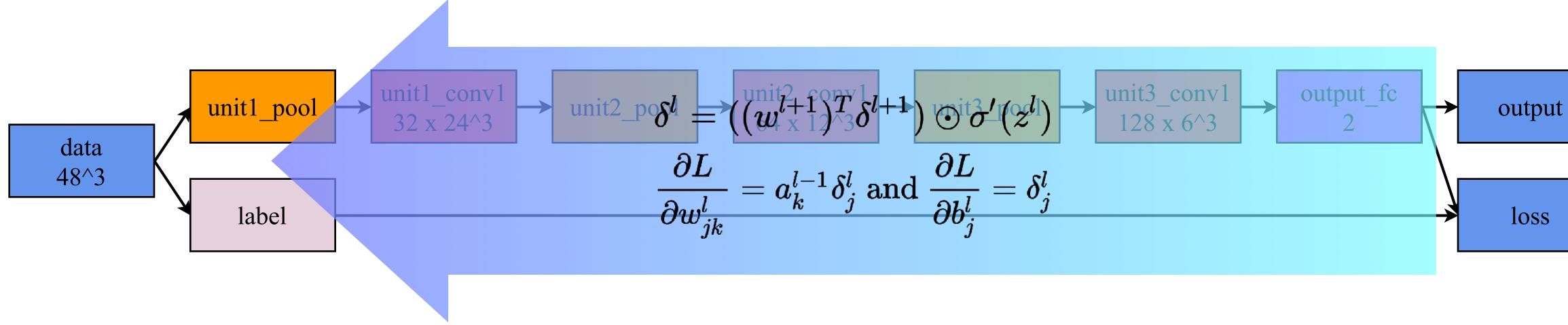


Vina (0.25Å)

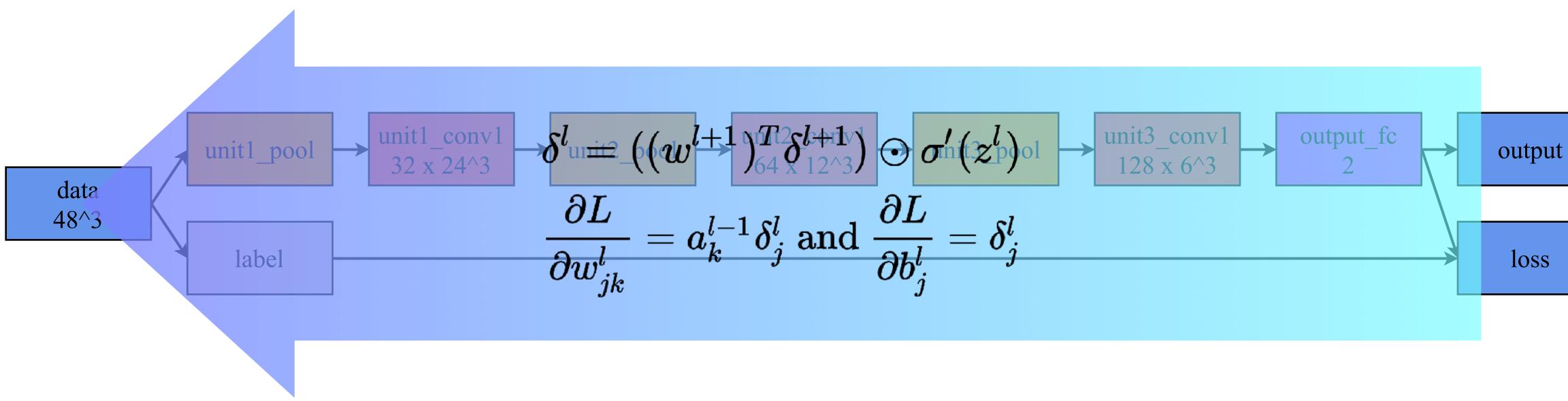
CNN (5.27Å)

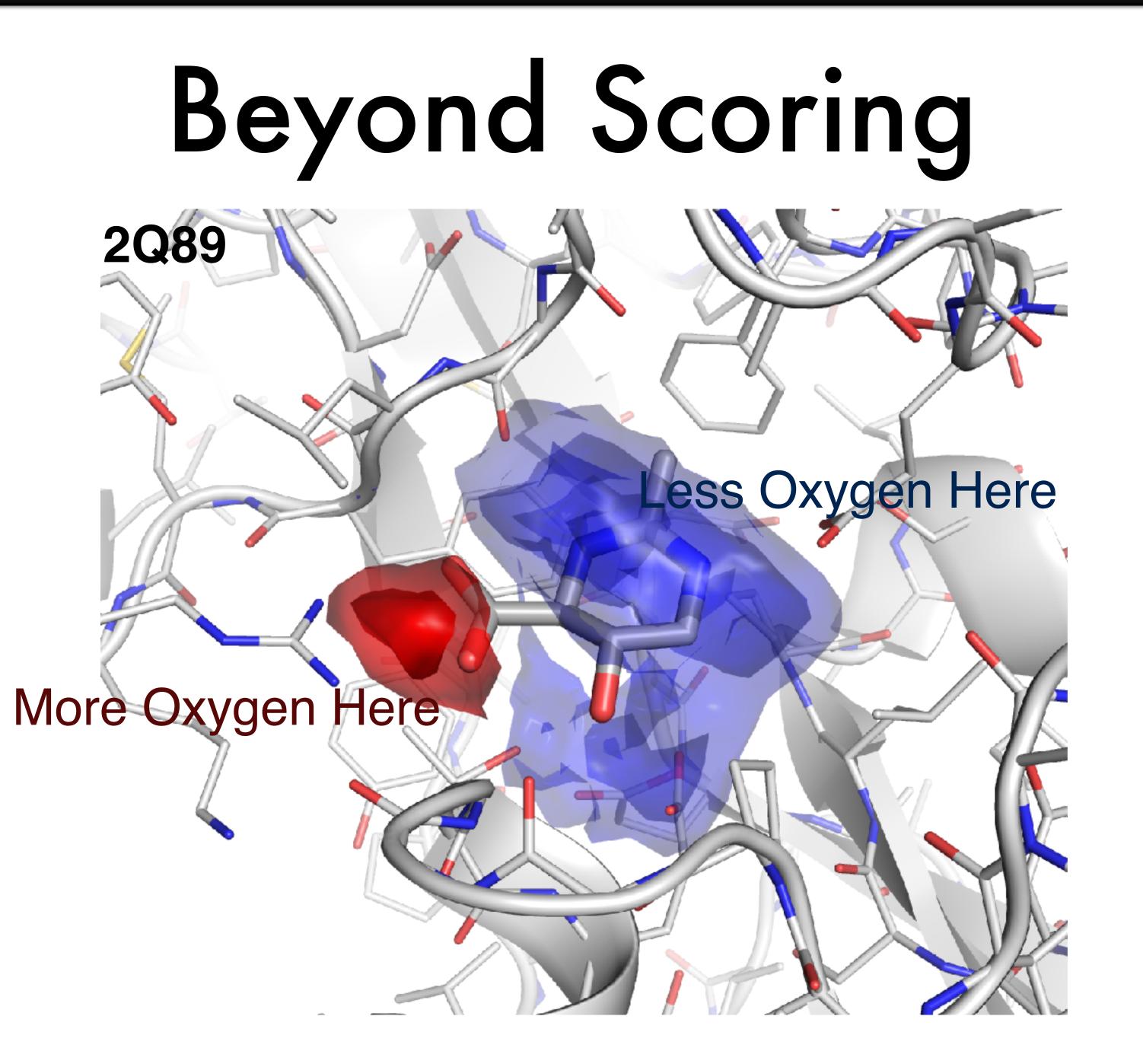


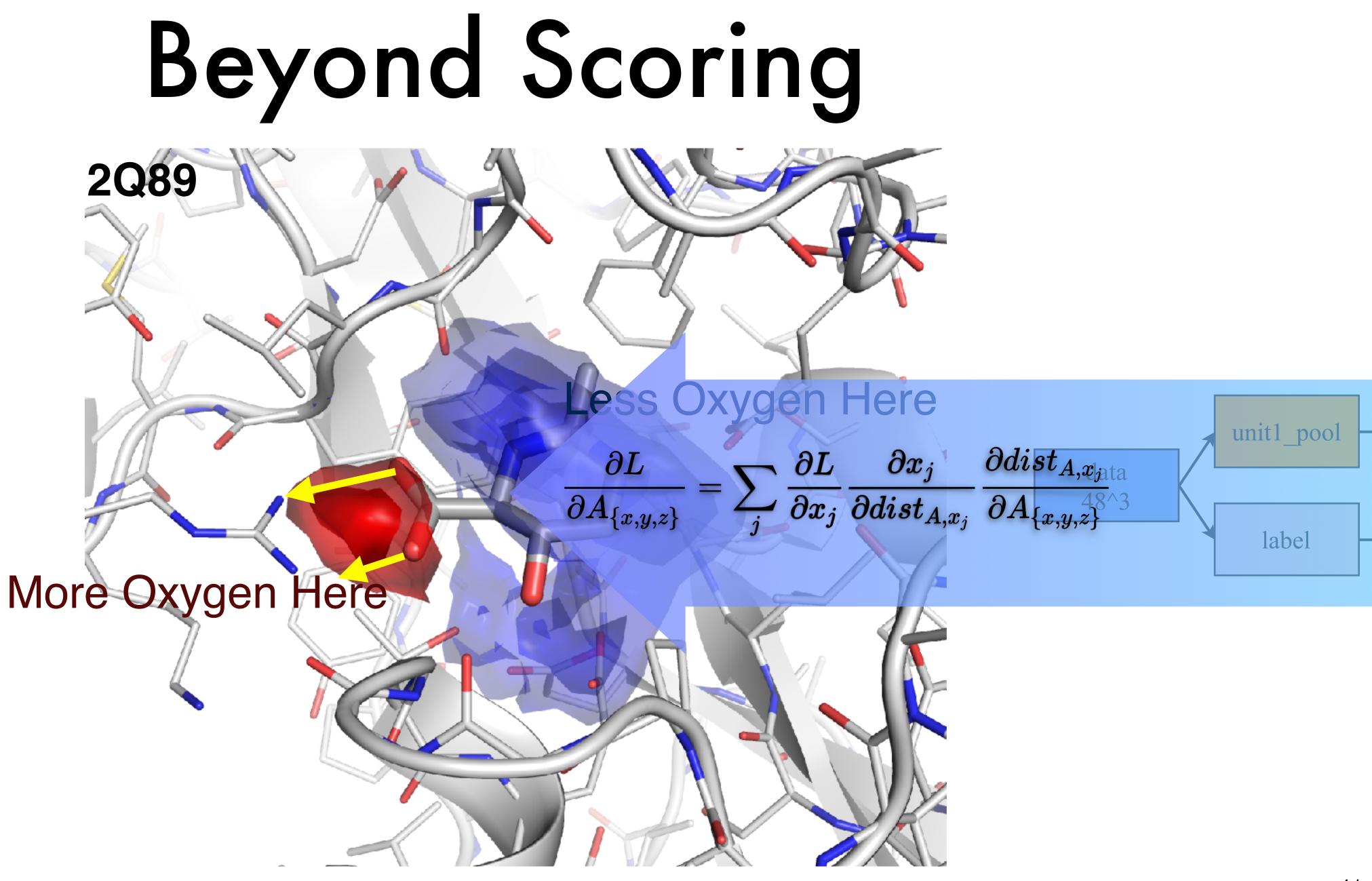
Beyond Scoring

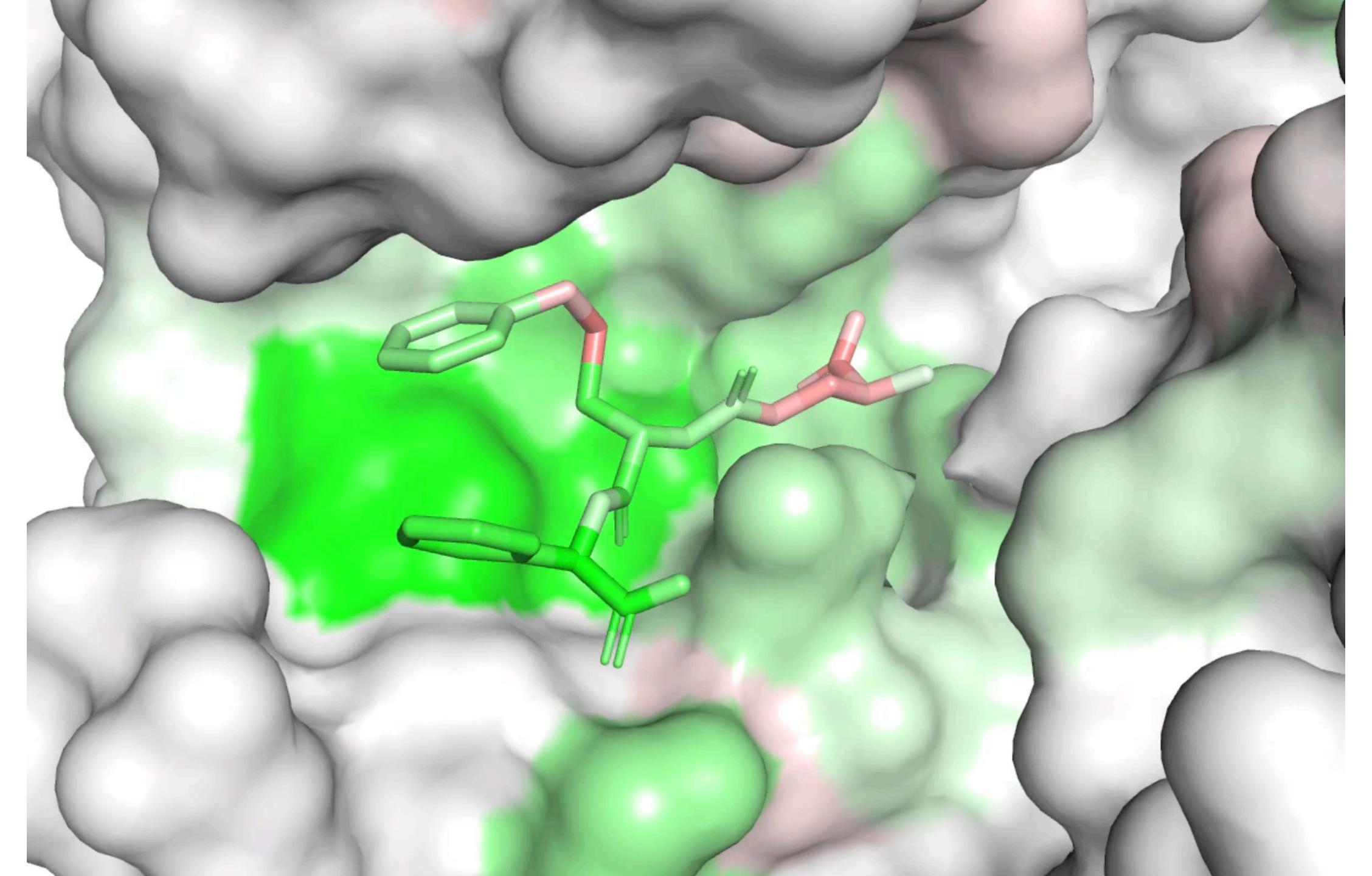


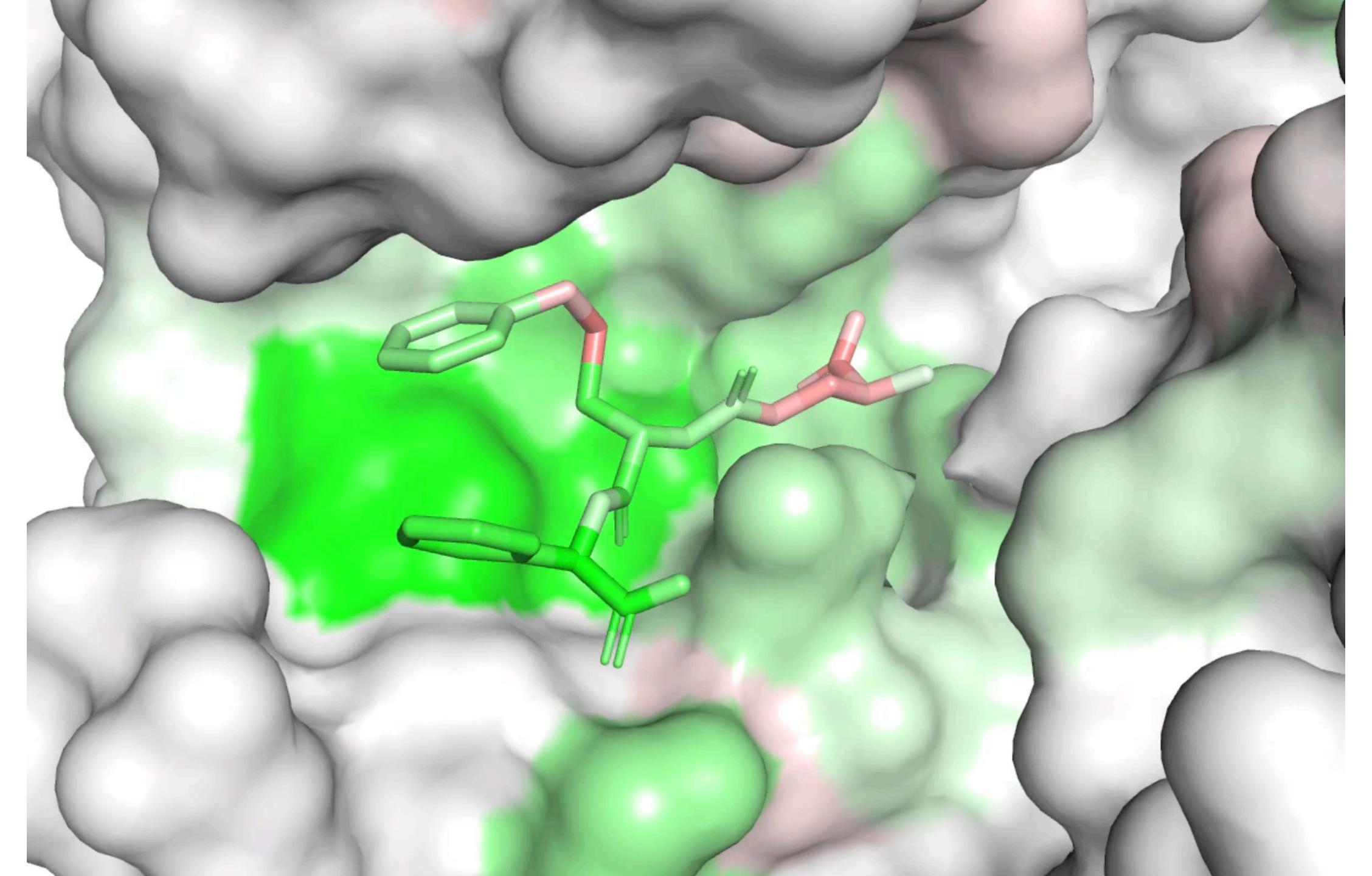
Beyond Scoring

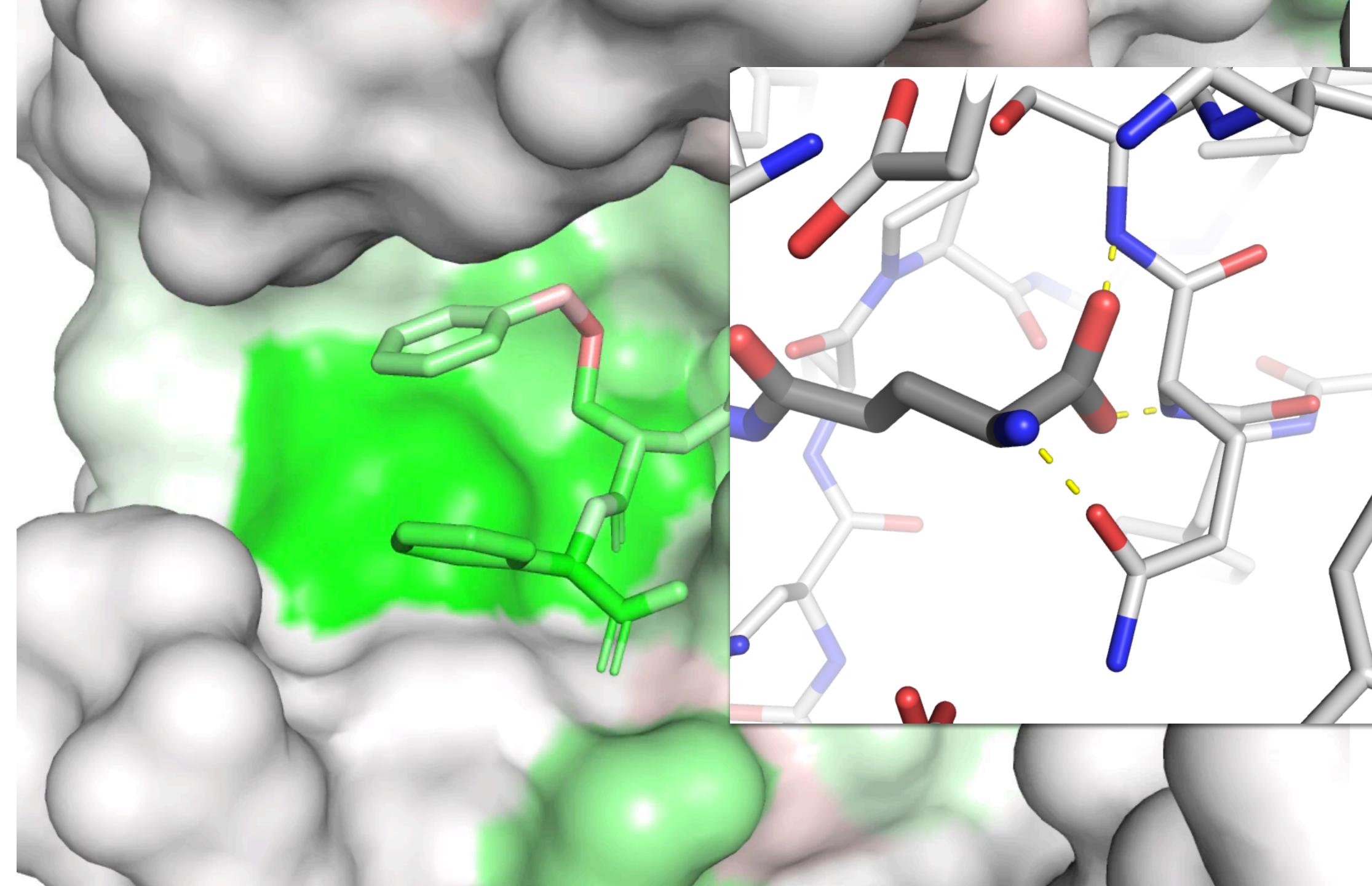


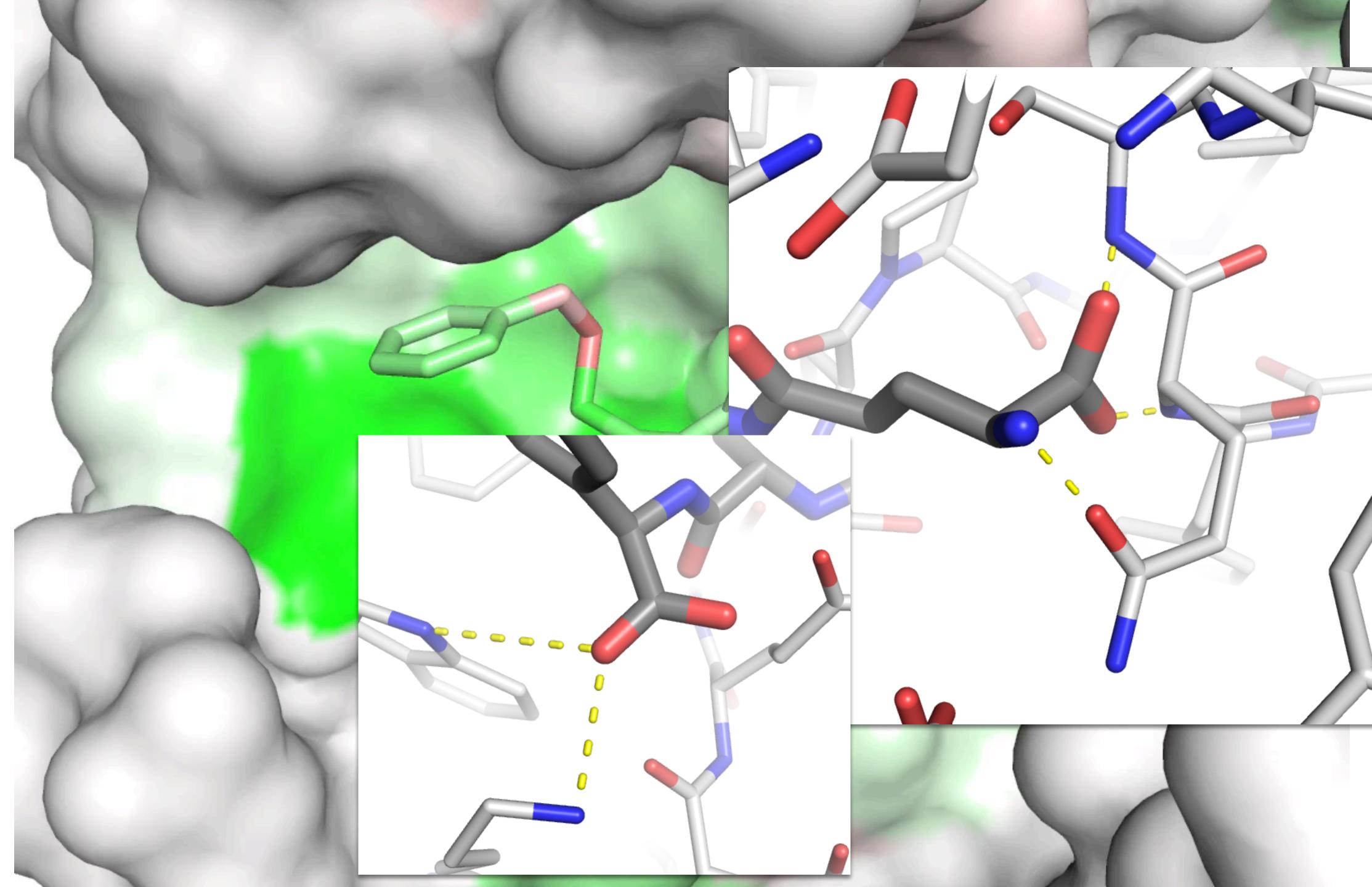


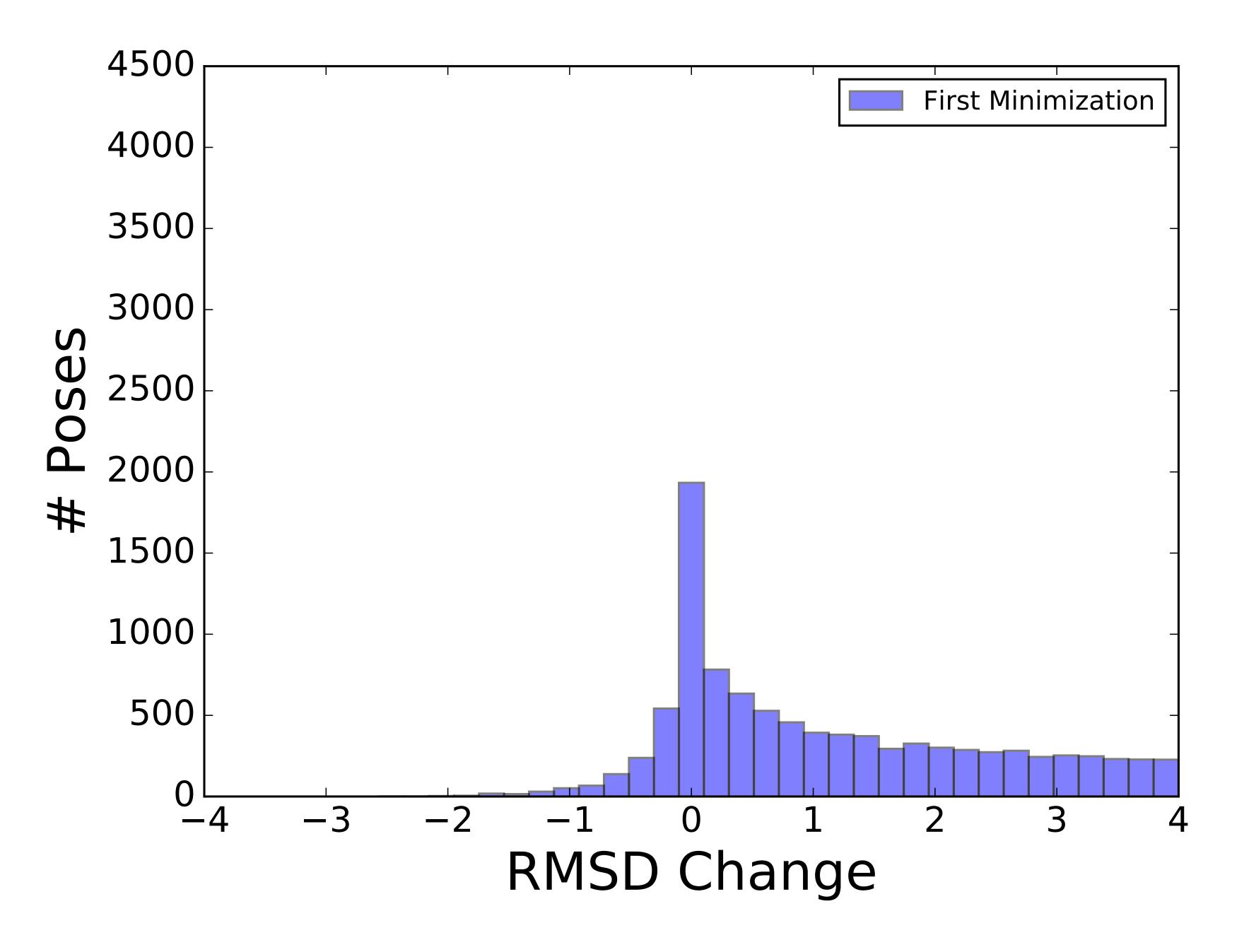


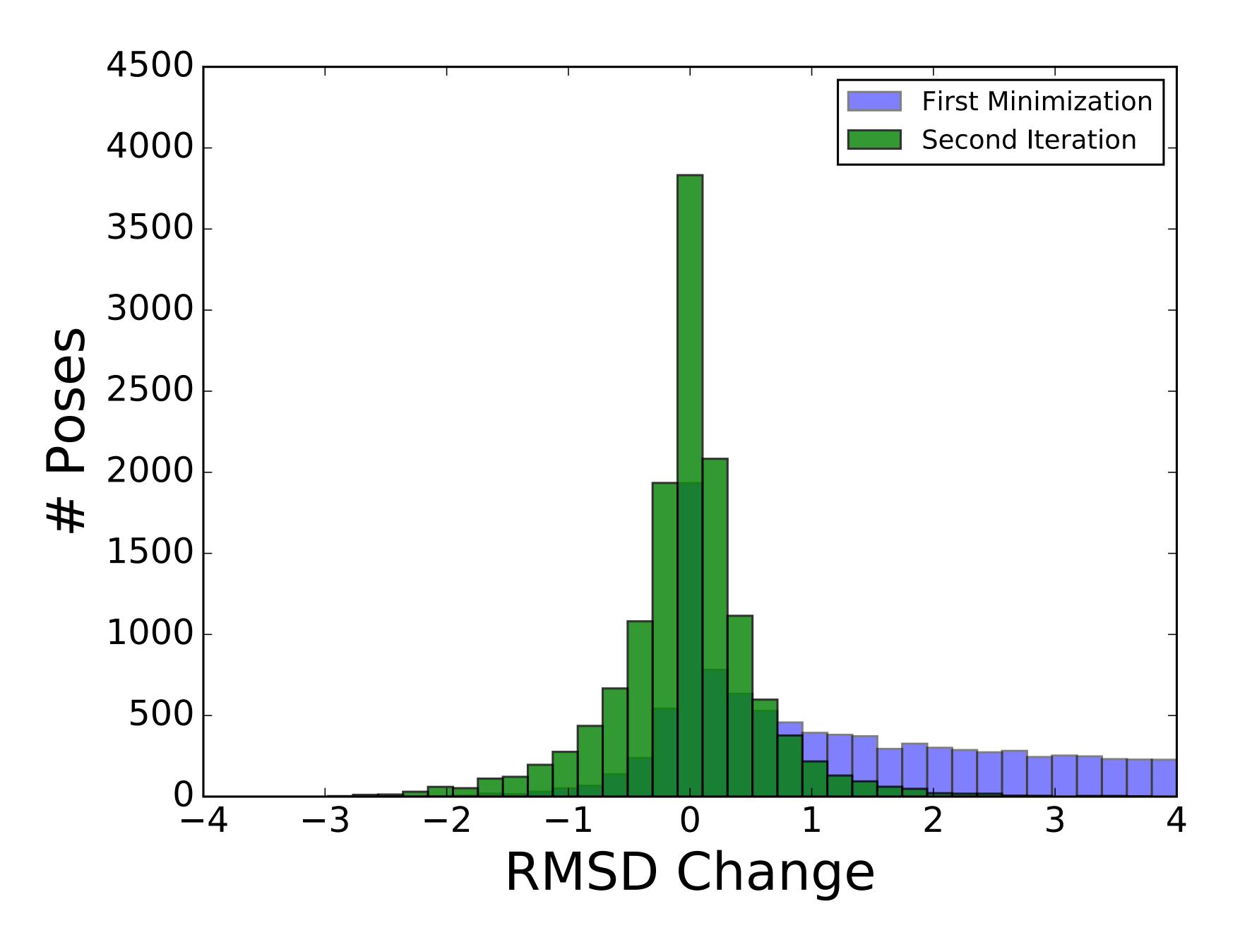


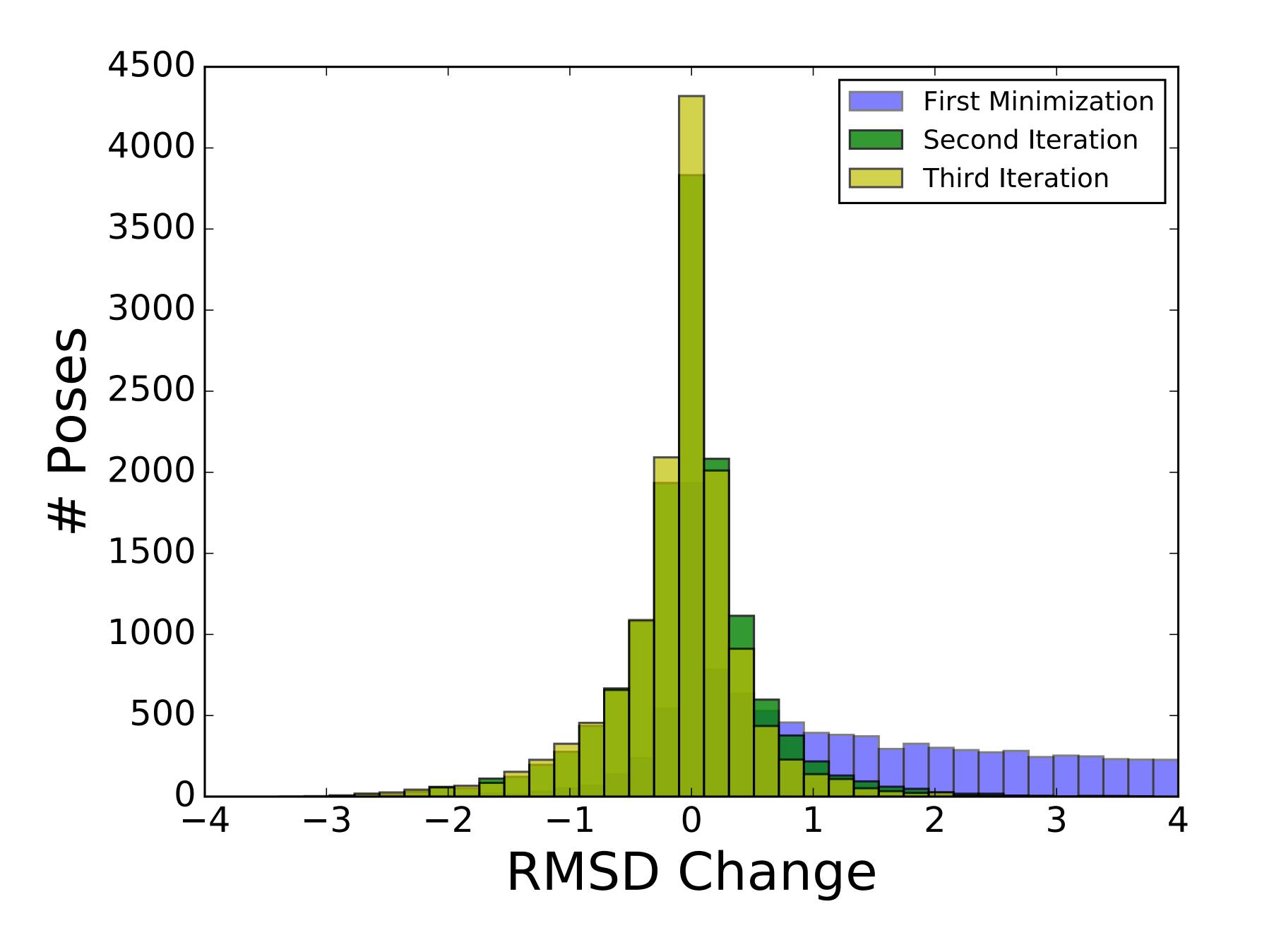




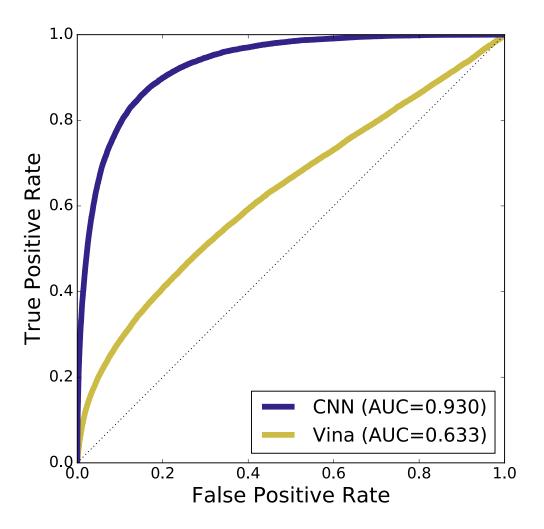


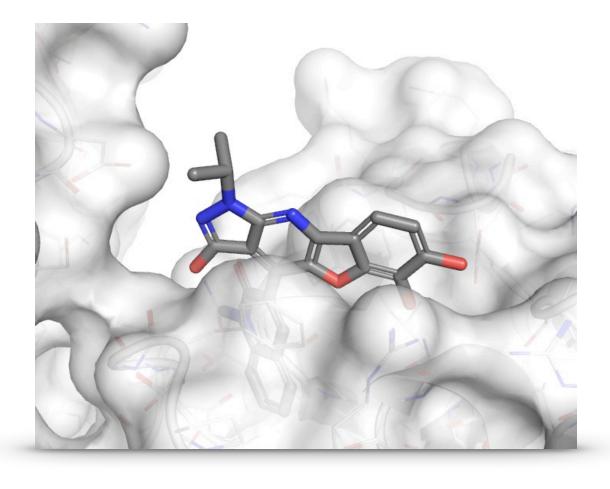






Pose Selection



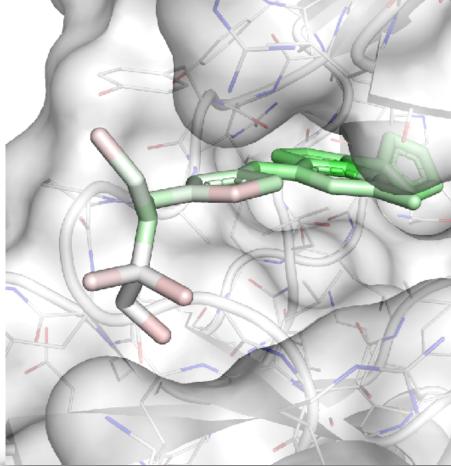


Virtual Screening

The Future

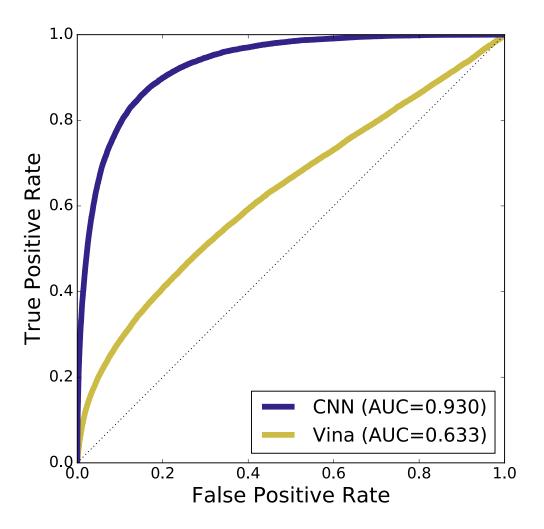
Pose Generation

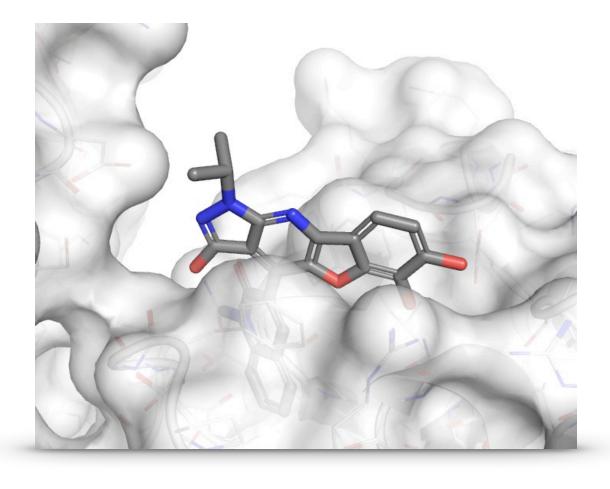
Compound Generation



Lead Optimization

Pose Selection



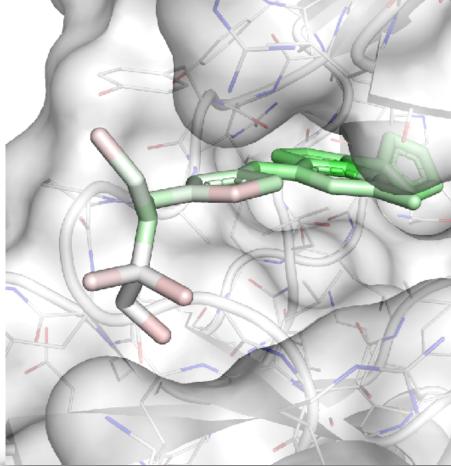


Virtual Screening

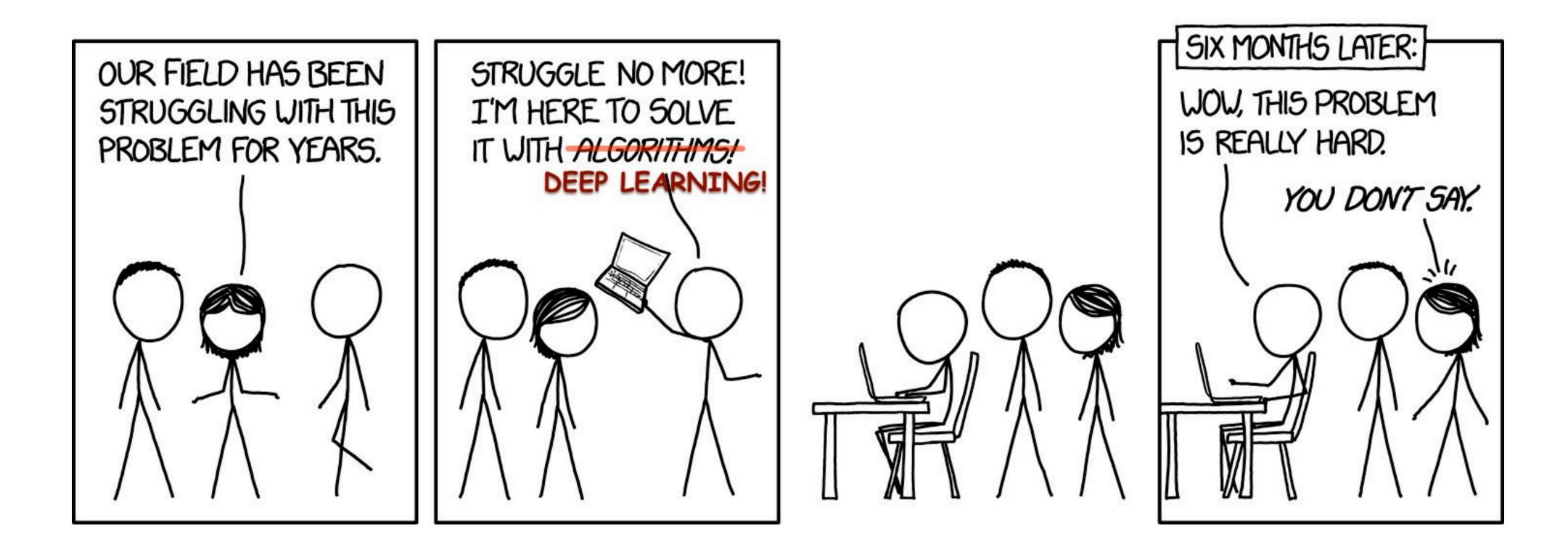
The Future

Pose Generation

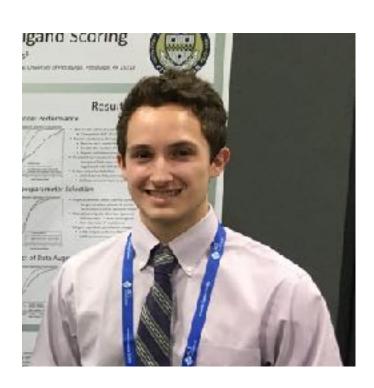
Compound Generation



Lead Optimization

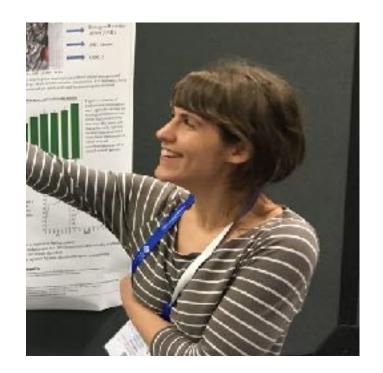


Acknowledgements



Matt Ragoza

Josh Hochuli

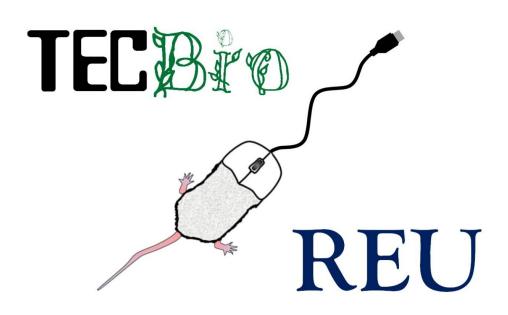


Elisa Idrobo Jocelyn Sunseri

Group Members

Jocelyn Sunseri Matt Ragoza Josh Hochuli **Pulkit Mittal** Alec Helbling Tamar Skaist Christopher Dunstan

Department of Computational and Systems Biology



National Institute of General Medical Sciences R01GM108340

