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1. Does the compound do what you want it to? 
2. Does the compound not do what you don’t want it to? 
3. Is what you want it to do the right thing?
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Unlike ligand based approaches, 
generalizes to new targets

Requires molecular target with 
known structure and binding site
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Pose Prediction Binding Discrimination Affinity Prediction
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Protein-Ligand Scoring
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r1 r2d

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

AutoDock Vina
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Can we do better?
Accurate pose prediction, binding discrimination, and affinity 
prediction without sacrificing performance? 

Key Idea: Leverage “big data” 
• 231,655,275 bioactivities in PubChem 
• 125,526 structures in the PDB 
• 16,179 annotated complexes in PDBbind
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Image Recognition
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https://devblogs.nvidia.com

Convolutional Neural Networks
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Convolutional Neural Networks
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CNNs for Protein-Ligand Scoring
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CNN
Pose Prediction

Binding 
Discrimination

Affinity Prediction

• Input representation 
• Training 
• Model optimization 
• Visualize and Evaluation
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(R,G,B) pixel
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Atom Density
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Gaussian
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Atom Types
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Ligand
AliphaticCarbonXSHydrophobe  

AliphaticCarbonXSNonHydrophobe  
AromaticCarbonXSHydrophobe  

AromaticCarbonXSNonHydrophobe  
Bromine  
Chlorine  
Fluorine  
Iodine  

Nitrogen  
NitrogenXSAcceptor  

NitrogenXSDonor  
NitrogenXSDonorAcceptor 

Oxygen  
OxygenXSAcceptor  

OxygenXSDonorAcceptor  
Phosphorus  

Sulfur  
SulfurAcceptor 

Receptor
AliphaticCarbonXSHydrophobe  

AliphaticCarbonXSNonHydrophobe  
AromaticCarbonXSHydrophobe  

AromaticCarbonXSNonHydrophobe  
Calcium  

Iron  
Magnesium  

Nitrogen  
NitrogenXSAcceptor  

NitrogenXSDonor  
NitrogenXSDonorAcceptor 

OxygenXSAcceptor  
OxygenXSDonorAcceptor  

Phosphorus  
Sulfur  
Zinc
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Training Data
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Pose Prediction

337 protein-ligand complexes 
• curated for electron density 
• diverse targets 
• <10µM affinity 
• generate poses with Vina 

- 745  <2Å RMSD (actives) 
- 3251 >4Å RMSD (decoys) 

12,484 protein-ligand complexes 
• diverse targets 
• wide range of affinities 
• generate poses with AutoDock Vina 
• include minimized crystal pose 

- 24,727  <2Å RMSD (actives) 
- 244,192 >4Å RMSD (decoys) 
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Model Evaluation
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CSAR: >90% similar 
targets kept in same fold 

PDBbind: >80% similar 
targets kept in same fold

AUC
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Model Training
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Parallelize	over	atoms	to	obtain	a	mask	of	atoms	that	overlap	each	grid	region	
Use	exclusive	scan	to	obtain	a	list	of	atom	indices	from	the	mask	
Parallelize	over	grid	points,	using	reduced	atom	list	to	avoid	O(Natoms)	check	

Custom MolGridDataLayer

Caffe

http://caffe.berkeleyvision.org/
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Data Augmentation
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Data Augmentation
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Model Optimization
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Atom Types 
• Vina (34) 
• element-only (18) 
• ligand-protein (2) 

Atom Density Type 
• Boolean 
• Gaussian 

Radius Multiple 
Resolution 

Pooling 

Depth 
Width 
Fully Connected Layers  

max
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Model Optimization
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Model Optimization
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unit1_pool 

unit1_conv1 

32 x 24^3

loss 

unit2_pool 

unit2_conv1 

64 x 12^3

label

unit3_pool 

output_fc 

2

output 

unit3_conv1 

128 x 6^3

data 
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University of Pittsburgh Computational and Systems Biology

Cross-Validation Evaluation
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Pose Prediction (CSAR)
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Pose Prediction (CSAR)
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inter-target ranking intra-target ranking
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Pose Prediction (PDBbind)
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Visualization
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Examples
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3COY 2QMJ 3OZT

Partially Aligned Poses 
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