Protein-Ligand Scoring with Convolutional Neural Networks

American Chemical Society Meeting April 3, 2017

David Koes

>@david_koes

Structure Based Drug Design Lead Optimization **Virtual Screening**

Pose Prediction

Binding Discrimination

Affinity Prediction

Structure Based Drug Design Lead Optimization **Virtual Screening**

Pose Prediction

Binding Discrimination

Affinity Prediction

Protein-Ligand Scoring

AutoDock Vina

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?

Key Idea: Leverage "big data"

- 231,655,275 bioactivities in PubChem
- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind

Can we do better?

Deep Learning

Ar hast - a compater program that can beat a champion Go player materi

SATEALARD TRAASPARIATS

WIESGANS

limator.

Deep Learning

At host - a computer program that can beat a champion Go player Met of

Image Recognition

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

Pose Prediction

Binding Discrimination

Affinity Prediction

CNNs for Protein-Ligand Scoring

- Training

Input representation

Model optimization

Visualize and Evaluation

Pose Prediction

Binding Discrimination

Affinity Prediction

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

- (R,G,B) pixel \rightarrow
- (Carbon, Nitrogen, Oxygen,...) **voxel**

The only parameters for this representation are the choice of grid resolution, atom density, and atom types.

Atom Density

Atom Types

Ligand

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophobe Bromine Chlorine Fluorine lodine Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor Oxygen OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur SulfurAcceptor

Receptor

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophohe Calcium Iron Magnesium Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur Zinc

Training Data **Pose Prediction**

337 protein-ligand complexes

- curated for electron density
- diverse targets
- <10µM affinity
- generate poses with Vina
 - 745 <2Å RMSD (actives)
 - 3251 >4Å RMSD (decoys)

4056 protein-ligand complexes

- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose
 - 8,688 <2Å RMSD (actives)
 - 76,743 >4Å RMSD (decoys)

Training Data

Binding Discrimination

102 targets

- 22,645 actives
- 1,407,145 decoys
- <10µM affinity
- true poses unknown
- trust docked poses

Affinity Prediction

- 8,688 low RMSD poses
- assign known affinity
- regression problem

CSAR: >90% similar targets kept in same fold

DUD-E & PDBbind: >80% similar targets kept in same fold

Model Evaluation

Clustered Cross-validation

Data Augmentation

Data Augmentation

University of Pittsburgh

Model Optimization

Atom Types

- Vina (34)
- element-only (18)
- ligand-protein (2)

Atom Density Type

- Boolean
- Gaussian

Radius Multiple Resolution

Pooling Depth Width

Fully Connected Layers

Cross-Validation Evaluation

Pose Prediction (CSAR)

Pose Prediction (CSAR)

Pose Prediction (PDBbind)

Binding Determination

E D

102 targets

- 22,645 actives
- 1,407,145 decoys
- $<10\mu M$ affinity
- true poses unknown
- use top docked pose

Binding Determination

University of Pittsburgh

Partially Aligned Poses Combined 2:1 Training Set

Preentation	COMP-Divisio
Presentation	COMP-Divisio.

6:00pm-8:00pm Apr 4

COMP 290: Visualization of convolutional neural network scoring of protein-ligand binding

8:00pm-10:00pm Apr 3

COMP 290: Visualization of convolutional neural network scoring of protein-ligand binding

Beyond Scoring

Beyond Scoring

More Oxygen Here

2Q89

Less Oxygen Here

More Oxygen Here

2Q89

Less Oxygen Here

∂L _	$\nabla \partial L$	∂x_j	$\partial dist_{A,x_{jata}}$	
$\overline{\partial A_{\{x,y,z\}}}$ –	$\sum_{j} \overline{\partial x_{j}}$	$\overline{\partial dist_{A,x_j}}$	$\partial A_{\{x,y,z\}}^{48^{3}}$	

CNN Summary

Pose Prediction (Selection)

- consistently better than Vina at *inter*-target ranking
- consistently worse than Vina at *intra*-target ranking

Binding Determination (Virtual Screening)

- Generally better than Vina, **but**
- the model is pose-insensitive

Combined Training

- Get (mostly) best of both worlds
- ... including affinity prediction

You get what you train for...

...but you can train for what you want

CNN Summary

Pose Prediction (Selection)

- consistently better than Vina at *inter*-target ranking
- consistently worse than Vina at *intra*-target ranking

Binding Determination (Virtual Screening)

- Generally better than Vina, **but**
- the model is pose-insensitive

Combined Training

- Get (mostly) best of both worlds
- ... including affinity prediction

You get what you train for...

...but you can train for what you want

Acknowledgements

Matt Ragoza

Josh Hochuli

Elisa Idrobo Jocelyn Sunseri

Group Members

Jocelyn Sunseri Matt Ragoza Josh Hochuli **Roosha Mandal** Alec Helbling Lily Turner Aaron Zheng Sara Amato Lily Turner Aaron Zheng

Gibran Biswas

National Institute of **General Medical Sciences** R01GM108340

Department of Computational and Systems Biology

③@david_koes ③ github.com/gnina http://bits.csb.pitt.edu

③@david_koes ③ github.com/gnina http://bits.csb.pitt.edu

