Protein-Ligand Scoring with Convolutional Neural Networks Dovid Koes

@david_koes

ACS August 23, 2017

Structure Based Drug Design Lead Optimization **Virtual Screening**

Pose Prediction

Binding Discrimination

Affinity Prediction

Structure Based Drug Design Lead Optimization **Virtual Screening**

Pose Prediction

Binding Discrimination

Affinity Prediction

Protein-Ligand Scoring

AutoDock Vina

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

Pose Prediction

Quiroga R, Villarreal MA (2016) Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. PLoS ONE 11(5): e0155183. doi:10.1371/journal.pone.0155183

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, and affinity prediction without sacrificing performance?

Key Idea: Leverage "big data"

- 231,655,275 bioactivities in PubChem
- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind

Can we do better?

Machine Learning

Computational and Systems Biology

Voce

$\rightarrow y$ Prediction

Neural Networks

The universal approximation theorem states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes can approximate any continuous function to within a given error over a bounded input domain.

Deep Learning

At last — a computer program that can beat a champion Go player PAGE 484

SAFEGUARD TRANSPARENCY Don't let openness backfire À LA CARTE

WHEN GENES GOT 'SELFISH' Dawkins's calling

Deep Learning

At last – a computer program that can beat a champion Go player PAGE 484

SAFEGUARD TRANSPARENCY

WHEN GENES GOT 'SELFISH Dawkins's calling

Image Recognition

airplane	in 1	X		X	*	+	3	-		
automobile					-	The second	10			
bird	S	ſ	2		A state	A	-	30	_	
cat	-			54		10		22.5		
deer	6	48	X	R		Y	1	2.0		
dog	17	1	-		1			15		
frog		19			2		A.	7.5	-	
horse	- the	T.	P.	2	5	ITA	1	0.		
ship			dist.	-	MA			Ŭ		201
truck	at the second							1	-	

https://devblogs.nvidia.com

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

CNN

Pose Prediction

Binding Discrimination

Affinity Prediction

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

- (R,G,B) pixel \rightarrow
- (Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Atom Density

Gaussian

Atom Types

Ligand

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophobe Bromine Chlorine Fluorine lodine Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor Oxygen OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur SulfurAcceptor

Receptor

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophohe Calcium Iron Magnesium Nitrogen NitrogenXSAcceptor NitrogenXSDonor NitrogenXSDonorAcceptor OxygenXSAcceptor OxygenXSDonorAcceptor Phosphorus Sulfur Zinc

Training Data **Pose Prediction**

337 protein-ligand complexes

- curated for electron density
- diverse targets
- <10µM affinity
- generate poses with Vina
 - 745 <2Å RMSD (actives)
 - 3251 >4Å RMSD (decoys)

4056 protein-ligand complexes

- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose
 - 8,688 <2Å RMSD (actives)
 - 76,743 >4Å RMSD (decoys)

Data Augmentation

Data Augmentation

CSAR: >90% similar targets kept in same fold

DUD-E & PDBbind: >80% similar targets kept in same fold

Model Evaluation

Clustered Cross-validation

Pose Prediction (CSAR)

Pose Prediction (CSAR)

Pose Prediction (PDBbind)

Visualization

masking

gradients

layer-wise relevance

Visualizing Enzymes

Partially Aligned Poses

Beyond Scoring

Beyond Scoring

Iterative Refinement

Iterative Refinement

Iterative Refinement

worse

worse

worse

Pose Selection

Virtual Screening

The Future

Pose Generation

Lead Optimization

Pose Selection

Virtual Screening

The Future

Pose Generation

Lead Optimization

MolecuLeNet: A continuous-filter convolutional neural network for modeling quantum interactions

Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Rol (Submitted on 26 Jun 2017)

Automatic chemical design using a data-driven continuous represent molecules

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-Iparraguirre, Timo Ryan P. Adams, Alán Aspuru-Guzik (Submitted on 7 Oct 2016 (v1), last revised 6 Jan 2017 (this version, v2))

AtomNet: A Deep Convolutional Neural Network for Bioactivity Predict Structure-based Drug Discovery

Izhar Wallach, Michael Dzamba, Abraham Heifets (Submitted on 10 Oct 2015)

ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost

Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg (Submitted on 27 Oct 2016 (v1), last revised 6 Feb 2017 (this version, v4))

Convolutional Networks on Graphs for Learning Molecular Fingerprints

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams

(Submitted on 30 Sep 2015 (v1), last revised 3 Nov 2015 (this version, v2))

Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity

Joseph Gomes, Bharath Ramsundar, Evan N. Feinberg, Vijay S. Pande

(Submitted on 30 Mar 2017)

bert Müller	Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules						
tation of	Alessandro Lusci*+, Gianluca Pollastri+, and Pierre Baldi*+ [†] School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland [‡] Department of Computer Science, University of California, Irvine, Irvine, California 92697, United States						
othy D. Hirzel,	<i>J. Chem. Inf. Model.</i> , 2013 , <i>53</i> (7), pp 1563–1575 DOI: 10.1021/ci400187y Publication Date (Web): June 24, 2013						
	Low Data Drug Discovery with One-shot Learning						
tion in	Han Altae-Tran, Bharath Ramsundar, Aneesh S. Pappu, Vijay Pande (Submitted on 10 Nov 2016)						
	Massively Multitask Networks for Drug Discovery						

Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, Vijay Pande (Submitted on 6 Feb 2015)

Acknowledgements

Matt Ragoza

Josh Hochuli

Elisa Idrobo Jocelyn Sunseri

Group Members

Jocelyn Sunseri Matt Ragoza Josh Hochuli **Pulkit Mittal** Alec Helbling Tamar Skaist **Christopher Dunstan**

Department of Computational and Systems Biology

National Institute of **General Medical Sciences** R01GM108340

