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1. Does the compound do what you want it to”
2. Does the compound not do what you don’t want it to”

3. Is what you want it to do the right thing”?
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Structure Based Drug Design

Unlike ligand based approaches,
generalizes to new targets

Requires molecular target witn
known structure and binding site
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Structure Based Drug Design

Virtual Screening Lead Optimization
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Protein-Ligand Scoring

AutoDock Vina

gauss, (d) = wguassle—(d/O.Sh
gauss,(d) = wguassze—((d—3)/2)2
_ - _ ’wrcpu.lsiond2 d<0
repulsion(d) = { 0 d>0 )
|
005 ||
( Whydrophobic d<0.5 0| —
hydrophobic(d) = « 0 d>1.5 g oos!
| Whydrophobic(1.5 — d) otherwise £ el
1l |
0.15 | | | . swr?c —
| steric + hydrophobic ——
[ Whbond d < —0.7 02 | \ steric + H-bond -
hbond(d) = < 0 d>0
] 0.25 X : K i X i
\ whbond(—%d) otherwise 1 0 1 2 3 4 5 6

Surface distance (A)

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461 7
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Can we do better?

Accurate pose prediction, binding discrimination, and affinity
prediction without sacrificing performance?
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Can we do better?

Accurate pose prediction, binding discrimination, and affinity
prediction without sacrificing performance?

Key ldea: Leverage “big data”
« 231,655,275 bioactivities in PubChem
» 125,526 structures in the PDB
* 16,179 annotated complexes in PDBbind
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Deep Learning
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Image Recognition

airplane n&.-% y.-.=&

automobile - 2 K A0 £ i N ILSVRC top-5 error on ImageNet
we il WS

cat ol Rl el
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deer . R g Convolutional Neural Networks
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https://devblogs.nvidia.com
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Convolutional Neural Networks

) )

0.99
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Convolution Convolution Fully Connected
Feature Maps Feature Maps Traditional NN
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CNNs for Protein-Ligand Scoring

Pose Prediction

Binding
Discrimination

Affinity Prediction
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CNNs for Protein-Ligand Scoring

Input representation

Training

Model optimization

Visualize and Evaluation

Computational and Systems Biology

Pose Prediction

BindiNg
Discrimination

Aftinity

Prediction

12
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Protein-Ligand Representation

(R,G,B) pixel
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Computational and Systems Biology
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Protein-Ligand Representation

(R,G,B) pixel —

(Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this
representation are the choice of
grid resolution, atom density,
and atom types.

13
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Atom Density

’—'—

2d° |

———

-2 r<d< 1.5r

0 d> 1.57

(Gaussian

14



University of Pittsburgh Computational and Systems Biology

Atom Types

Ligand Receptor
AliphaticCarbonXSHydrophobe AliphaticCarbonXSHydrophobe
AliphaticCarbonXSNonHydrophobe AliphaticCarbonXSNonHydrophobe
AromaticCarbonXSHydrophobe AromaticCarbonXSHydrophobe
AromaticCarbonXSNonHydrophobe AromaticCarbonXSNonHydrophohe -
Bromine Calcium \
Chlorine lron
Fluorine Magnesium
&g o lodine Nitrogen
I Nitrogen NitrogenXSAcceptor
| NitrogenXSAcceptor NitrogenXSDonor
NitrogenXSDonor NitrogenXSDonorAcceptor
NitrogenXSDonorAcceptor OxygenXSAcceptor
Oxygen OxygenXSDonorAcceptor
OxygenXSAcceptor Phosphorus
OxygenXSDonorAcceptor Sulfur
Phosphorus VAlgle
Sulfur

SulfurAcceptor
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Training Data

Pose Prediction

337 protein-ligand complexes
e curated for electron density
e diverse targets
o <10uM affinity
* generate poses with Vina

- 745
. 325

<2A RMSD (actives)
1 >4A RMSD (decoys)

GPDR Gy

12,484 protein-ligand complexes
e diverse targets
* wide range of affinities
e generate poses with AutoDock Vina
e Include minimized crystal pose
- 24,727 <2A RMSD (actives)
- 244,192 >4A RMSD (decoys)

16
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Model Evaluation

CSAR: >90% similar Clustered Cross-validation
targets kept in same fold

PDBbind: >80% similar m A A O O

targets kept in same fold

True Positive Rate
o o

2 4 . .
False Positive Rate -
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Model Training

Custom MolGridDatalayer

Parallelize over atoms to obtain a mask of atoms that overlap each grid region

Use exclusive scan to obtain a list of atom indices from the mask Z

Parallelize over grid points, using reduced atom list to avoid O(Natoms) check nVIDIA

For example, consider subgrid 5:

Atom mask: 1 1 O O 0
Exclusive scan: 0 1 2 2 2

Final indices: 0 1

18
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Data Augmentation

train - no augmentation
train - random rotation & translation |_
test - random rotation & translation
test - no augmentation

2000 4000 6000 8000 10000

training iterations 19
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=

Model Optimization ==

Atom Types Pooling
e Vina (34)
e eclement-only (18)
* |[igand-protein (2)

1 3

unit2 pool

1 1

unit3 pool

(LSS
(/LSS S

MNAVNANAVAN

1

Atom Density lype

 Boolean I
» (Gaussian Depth —
Radius Multiple Width

unit5 pool

Resolution Fully Connected Layers
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Model Optimization

training time(ms) per iteration
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unitl_pool

unit2_pool

-

unit3_pool
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Model Optimization
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Pose Prediction (CSAR)
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False Positive Rate
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True Positive Rate
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Pose Prediction (CSAR)
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Random [ CNN Vina

Intra-target ranking
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True Positive Rate
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Delete single
ligand atoms

Delete ligand
fragments

Delete |
. ;

single

residues
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Examples
oo

Partially Aligned Poses
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Beyond Scoring

27
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Beyond Scoring

unit3 convl output fc
128 x 6°3 2
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unit3 convl output fc
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Beyond Scormg
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0 First Minimization
B After Retraining
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Questions®

Relevance
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