GPU-Accelerated Convolutional Neural Networks For Protein-Ligand Scoring

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

THE BIOPHARMACEUTICAL RESEARCH AND DEVELOPMENT PROCESS

- 1. Does the compound do what you want it to?
- 2. Does the compound **not** do what you **don't** want it to?
- 3. Is what you want it to do the right thing?

Protein Structures

sequence → structure → function

Protein Structures

sequence → structure → function

Unlike ligand based approaches, generalizes to new targets

Requires molecular target with known structure and binding site

Unlike ligand based approaches, generalizes to new targets

Requires molecular target with known structure and binding site

Unlike ligand based approaches, generalizes to new targets

Requires molecular target with known structure and binding site

Virtual Screening

Pose Prediction

Binding Discrimination

Affinity Prediction

Virtual Screening

Pose Prediction

Binding Discrimination

Affinity Prediction

Protein-Ligand Scoring

AutoDock Vina

$$egin{array}{lll} {
m gauss}_1(d) &=& w_{{
m guass}_1} e^{-(d/0.5)^2} \ {
m gauss}_2(d) &=& w_{{
m guass}_2} e^{-((d-3)/2)^2} \ {
m repulsion}(d) &=& \left\{ egin{array}{lll} w_{{
m repulsion}} d^2 & d < 0 \ 0 & d \geq 0 \end{array}
ight. \end{array}$$

$$ext{hydrophobic}(d) \ = \ \left\{ egin{array}{ll} w_{ ext{hydrophobic}} & d < 0.5 \\ 0 & d > 1.5 \\ w_{ ext{hydrophobic}}(1.5-d) & otherwise \end{array}
ight.$$

$$ext{hbond}(d) \; = \; \left\{ egin{array}{ll} w_{ ext{hbond}} & d < -0.7 \ 0 & d > 0 \ w_{ ext{hbond}}(-rac{10}{7}d) & otherwise \end{array}
ight.$$

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Can we do better?

Accurate pose prediction, binding discrimination, **and** affinity prediction without sacrificing performance?

Key Idea: Leverage "big data"

- 231,655,275 bioactivities in PubChem
- 125,526 structures in the PDB
- 16,179 annotated complexes in PDBbind

Deep Learning

Deep Learning

Image Recognition

Convolutional Neural Networks

CNNs for Protein-Ligand Scoring

CNNs for Protein-Ligand Scoring

CNNs for Protein-Ligand Scoring

Protein-Ligand Representation

(R,G,B) pixel

Protein-Ligand Representation

(R,G,B) pixel →(Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

Atom Density

$$A(d,r) = \begin{cases} e^{-\frac{2d^2}{r^2}} & 0 \le d < r \\ \frac{4}{e^2r^2}d^2 - \frac{12}{e^2r}d + \frac{9}{e^2} & r \le d < 1.5r \\ 0 & d \ge 1.5r \end{cases}$$

Gaussian

Atom Types

Ligand

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophobe

Bromine

Chlorine

Fluorine

lodine

Nitrogen

NitrogenXSAcceptor

NitrogenXSDonor

NitrogenXSDonorAcceptor

Oxygen

OxygenXSAcceptor

OxygenXSDonorAcceptor

Phosphorus

Sulfur SulfurAcceptor

Receptor

AliphaticCarbonXSHydrophobe AliphaticCarbonXSNonHydrophobe AromaticCarbonXSHydrophobe AromaticCarbonXSNonHydrophobe

Calcium

Iron

Magnesium

Nitrogen

NitrogenXSAcceptor

NitrogenXSDonor

NitrogenXSDonorAcceptor

OxygenXSAcceptor

OxygenXSDonorAcceptor

Phosphorus

Sulfur

Zinc

Training Data

Pose Prediction

337 protein-ligand complexes

- curated for electron density
- diverse targets
- <10µM affinity
- generate poses with Vina
 - 745 <2Å RMSD (actives)
 - 3251 >4Å RMSD (decoys)

12,484 protein-ligand complexes

- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose
 - 24,727 <2Å RMSD (actives)
 - 244,192 >4Å RMSD (decoys)

Model Evaluation

CSAR: >90% similar targets kept in same fold

PDBbind: >80% similar targets kept in same fold

Clustered Cross-validation

Model Training

Custom MolGridDataLayer

Parallelize over *atoms* to obtain a mask of atoms that overlap each grid region Use exclusive scan to obtain a list of atom indices from the mask Parallelize over *grid points*, using reduced atom list to avoid O(N_{atoms}) check

Data Augmentation

Data Augmentation

Model Optimization

Atom Types

- Vina (34)
- element-only (18)
- ligand-protein (2)

Atom Density Type

- Boolean
- Gaussian

Radius Multiple

Resolution

Pooling

Depth

Width

Fully Connected Layers

unit1_pool

48^3

label

Model Optimization

Cross-Validation Evaluation

Pose Prediction (CSAR)

Pose Prediction (CSAR)

inter-target ranking

intra-target ranking

Pose Prediction (PDBbind)

Pose Prediction (PDBbind)

inter-target ranking

intra-target ranking

Visualization

Examples

Partially Aligned Poses

The Future

Pose Selection

Pose Generation

Virtual Screening

Compound Generation

Lead Optimization

The Future

Pose Selection

Pose Generation

Virtual Screening

Compound Generation

Lead Optimization

Acknowledgements

Matt Ragoza

Elisa Idrobo

Josh Hochuli

Jocelyn Sunseri

Group Members

Jocelyn Sunseri Matt Ragoza Josh Hochuli Roosha Mandal Alec Helbling Lily Turner Aaron Zheng Sara Amato Lily Turner Aaron Zheng Gibran Biswas

Department of
Computational and
Systems Biology

Questions?

Binding Determination

Affinity Prediction

Relevance Propagation

Questions?

Binding Determination

Affinity Prediction

Relevance Propagation

