Computational Drug Discovery David Koes

Big Ideas in Computer Science February 10, 2022

Structure Based Drug Design

Pose Prediction **Binding Discrimination** Affinity Prediction

Virtual Screening

Lead Optimization

Drug Discovery Funnel

http://pharmit.csb.pitt.edu

			e	•
	☆	2	:	
h	ts			8
	Mass	RBr	۱d	s
	395		1	→ I
	330		0	
	607	741	15	
	314		0	
	275		0	
	351		0	K
	330		0	
	300		1	
	288		0	
	272		0	
	272		0	
	272		0	_
	296		0	
	378		1	7
	312		1	
	375		3	
	288		0	
	607	1	15	
,3	36 hits		Y	
-	75 Nex	t		4
econas				
v	e			1
	/			

Koes, D. R., & Camacho, C. J. (2011). Pharmer: efficient and exact pharmacophore search. *Journal of Chemical Information and Modeling, 51*(6), 1307-1314. doi:10.1021/ci200097m Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: pharmacophore search of the ZINC database. *Nucleic acids research, 40*(Web Server issue), W409-414. doi:10.1093/nar/gks378

Pharmer

Pharmacophore A spatial arrangement of molecular features essential for biological activity

Pharmer

Pharmer

Pharmer

• MOE FXIa Pharmer HSP90 • **^** Pharmer FXIa

University of Pittsburgh

http://pharmit.csb.pitt.edu

Computational and Systems Biology

+

8

sb.pitt.edu/search.html	C			0	+
	> Pharmacop	> Pharmacophore Results			
	Name	RMSD 🔻	Mass 🔶	RBnds	-
	PubChem-1396068	2 0.223	392	5	
	PubChem-2367336	0 0.223	391	4	
	PubChem-1396068	2 0.223	392	5	
	PubChem-2367336	0 0.223	391	4	
	PubChem-1396068	4 0.243	388	6	
	PubChem-1396068	4 0.243	388	6	
	PubChem-1396068	4 0.243	388	6	
	PubChem-1396068	4 0.250	388	6	
	PubChem-5981030	4 0.311	481	8	⇒I
	PubChem-1000039	9 0.325	389	6	
	PubChem-1000039	9 0.327	389	6	
	PubChem-5908106	1 0.349	875	15	
	PubChem-1025094	2 0.379	387	3	
	PubChem-2368648	0.379	386	2	
	PubChem-1396068	0.442	385	7	
	PubChem-1396068	1 0.442	385	7	
	PubChem-1396068	0.444	385	7	
	PubChem-8818135	4 0.449	698	10	
	PubChem-842716	0.462	319	8	
	Show	vious 1 2	f 38 hits Next		

Drug Discovery Funnel

$$egin{array}{rll} {
m gauss}_1(d) &= w_{{
m guass}_1} e^{-(d/0.5)^2} \ {
m gauss}_2(d) &= w_{{
m guass}_2} e^{-((d-3)/2)^2} \ {
m repulsion}(d) &= \left\{ egin{array}{c} w_{{
m repulsion}} d^2 & d < 0 \ 0 & d \geq 0 \end{array}
ight.$$

$$ext{hydrophobic}(d) \ = \ \left\{ egin{array}{cc} w_{ ext{hydrophobic}} & d \ 0 & d \ w_{ ext{hydrophobic}}(1.5-d) & d \ w_{ ext{hydrophobic}}(1.5-d) & d \end{array}
ight\}$$

$$\mathrm{hbond}(d) \;=\; \left\{egin{array}{cc} w_\mathrm{hbond} & d < -0. \ 0 & d > 0 \ w_\mathrm{hbond}(-rac{10}{7}d) & otherwind \end{array}
ight.$$

Protein-Ligand Scoring

Computational and Systems Biology

Pose Prediction

Binding Discrimination

Affinity Prediction

Neural Networks

The **universal approximation theorem** states that, under reasonable assumptions, a feedforward **neural network** with a finite number of nodes **can approximate any continuous** function to within a given error over a bounded input domain.

Deep Learning

At last – a computer program that can beat a champion Go player PAGE 48 **ALL SYSTEMS GO**

CONSERVATION SONGBIRDS À LA CARTE

RESEARCH ETHICS SAFEGUARD TRANSPARENCY

POPULAR SCIENCE WHEN GENES GOT 'SELFISH' > NATURE.COM/NAT

Convolutional Neural Networks

Convolutional Filters

-1	-1	-1
0	0	0
1	1	1

-1	0	1	-1	-1	-1
-1	0	1	-1	8	-1
-1	0	1	-1	-1	-1

Protein-Ligand Representation

- (R,G,B) pixel \rightarrow
- (Carbon, Nitrogen, Oxygen,...) voxel

The only parameters for this representation are the choice of **grid resolution**, **atom density**, and **atom types**.

PDBbind 2016 refined set

- 4056 protein-ligand complexes
- diverse targets
- wide range of affinities
- generate poses with AutoDock Vina
- include minimized crystal pose

Redocked Training Set

Training

Pocketome

- 2923 distinct pockets
- 27,142 receptor structures
- 4,138,117 non-redundant poses
- generate poses with AutoDock Vina
- include minimized crystal pose

Crossdocked Training Set

Optimized Models

Default2018

Default2017 Default2018 HiRes Affinity

Pose Results

University of Pittsburgh

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

University of Pittsburgh

Gradients: Beyond Scoring

Less Oxygen Here

$\frac{\partial L}{\partial A} = \sum_{i \in G_A} \frac{\partial L}{\partial G_i} \frac{\partial G_i}{\partial D} \frac{\partial D}{\partial A}$

Iterative Refinement

GNINA 1.0 https://github.com/gnina/gnina

SOFTWARE

Open Access

GNINA 1.0: molecular docking with deep learning

Andrew T. McNutt¹, Paul Francoeur¹, Rishal Aggarwal², Tomohide Masuda¹, Rocco Meli³, Matthew Ragoza¹, Jocelyn Sunseri¹ and David Ryan Koes^{1*}

Virtual Screening

DUD-E			LIT-PCBA		
AUC	NEF1%	EF1%	AUC	NEF1%	EF
0.683	0.0514	3.02	0.6	0.013	1.
0.963	0.857	51.9	0.542	0.00733	0.7
0.745	0.118	7.05	0.581	0.011	1
0.764	0.187	11.4	0.577	0.0103	0.
0.756	0.179	11.6	0.579	0.037	2.
0.702	0.156	10.3	0.498	0.0147	1
0.795	0.27	17.7	0.616	0.037	2.
0.767	0.313	20.4	0.514	0.0238	1.
0.795	0.258	15.6	0.611	0.0238	1.
0.744	0.241	15.8	0.512	0.0147	1.
	AUC 0.683 0.963 0.745 0.764 0.764 0.756 0.702 0.795 0.767 0.795 0.795 0.744	DUD-EAUCNEF1%0.6830.05140.9630.8570.7450.1180.7640.1870.7560.1790.7020.1560.7950.270.7670.3130.7950.2580.7440.241	DUD-EAUCNEF1%EF1%0.6830.05143.020.9630.85751.90.7450.1187.050.7640.18711.40.7560.17911.60.7020.15610.30.7950.2717.70.7670.31320.40.7950.25815.60.7440.24115.8	DUD-EAUCNEF1%EF1%AUC0.6830.05143.020.60.9630.85751.90.5420.7450.1187.050.5810.7640.18711.40.5770.7560.17911.60.5790.7020.15610.30.4980.7950.2717.70.6160.7950.25815.60.6110.7440.24115.80.512	DUD-ELIT-PCBAAUCNEF1%EF1%AUCNEF1%0.6830.05143.020.60.0130.9630.85751.90.5420.007330.7450.1187.050.5810.0110.7640.18711.40.5770.01030.7560.17911.60.5790.0370.7020.15610.30.4980.01470.7670.31320.40.5140.02380.7950.25815.60.6110.02380.7440.24115.80.5120.0147

Profilin

- Actin-binding protein
- Accelerates actin polymerization in presence of proline-rich proteins (e.g. formin, WASP, VASP)
- Sequesters actin otherwise

Dave Gau

Partha Roy

- Scaffold Hop Early Hit
- Pharmacophore screen (Pharmit)
- Ranked with Vina and CNN

Structure-based virtual screening identifies a small-molecule inhibitor of the profilin 1– actin interaction

David Gau^{‡1}, Taber Lewis[§], Lee McDermott[¶], Peter Wipf^{‡,§}, David Koes[¶] and Partha Roy^{‡, ||},**²

Abigail Allen 🏽 David Gau 🖲 Paul Francoeur 🖷 ... David Koes 🖷 Walter J. Storkus 🖷 Partha Roy 🔗 🖂 🖷 Show all authors 💻

Results

Generative Modeling

Discriminative Model

Features X

Generative Model

Generative Adversarial Networks

True Examples

Generator

University of Pittsburgh

Generative Adversarial Networks

2015

2016

lan Goodfellow @goodfellow_ian · 2h 4.5 years of GAN progress on face generation. arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

https://thispersondoesnotexist.com

Generative Models

Generative models approximate a data distribution directly. They can map samples from one distribution (noise or input data) to realistic samples from an output distribution of interest.

noise sample

generated receptor & ligand grid

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Hirzel[†], Ryan P. Adams^{∇I}, and Alán Aspuru-Guzik^{*‡⊥} (1)

LOSS

Variational Autoencoding Examples

Atom Fitting

Variational Autoencoding Examples

Around a target molecule (3 samples per each mol)					
mol_2	mol_3				
(0.40, ©82, 0.74)	≪ (0.31, <mark>0.56</mark> , <mark>0.87</mark>)				
(0.43, 0.82, 0.48)	♥ (0.35, <mark>0.56</mark> , <mark>0.44</mark>)				
(0.33, 0.82, 0.52)	(0.27, 0.56, 0.78)				
	t molecule (3 samples mol_2 (0.40, C82, 0.74) (0.43, 0.82, 0.48) (0.43, 0.82, 0.48)	t molecule (3 samples per each mol) mol_2 mol_3 (0.40, (CB2, 0.74) $(0.31, 0.56, 0.87)(0.43, 0.82, 0.48)$ $(0.35, 0.56, 0.44)(0.33, 0.82, 0.52)$ $(0.27, 0.56, 0.78)$			

http://people.eecs.berkeley.edu/~pathak/context_encoder/

Context Encoding

receptor grid

Computational and Systems Biology

Context Encoding

generated ligand grid

Conditioning on the Receptor

Context Encoding with Fully Convolutional Network

Generated

1m5w

Fit Densities

Fit Atoms

Context Encoding with Fully Convolutional Network

Generated

3bxg

Fit Densities

Fit Atoms

Context Encoding with Fully Convolutional Network

Generated

3ebp

Fit Densities

Fit Atoms

Acknowledgements

University of Pittsburgh

Computational and Systems Biology

