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Protein-Ligand Scoring
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O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring 
function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

AutoDock Vina
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Can we do better?
Accurate pose prediction, binding discrimination, and affinity 
prediction without sacrificing performance?  

Key Idea: Leverage “big data” 
• 231,655,275 bioactivities in PubChem 
• 125,526 structures in the PDB 
• 16,179 annotated complexes in PDBbind
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Deep Learning
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Image Recognition
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https://devblogs.nvidia.com

Convolutional Neural Networks
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Convolutional Neural Networks
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CNNs for Protein-Ligand Scoring
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CNN
Pose Prediction

Binding 
Discrimination

Affinity Prediction
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Protein-Ligand Representation
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(R,G,B) pixel            → 
(Carbon, Nitrogen, Oxygen,…) voxel

The only parameters for this 
representation are the choice of 
grid resolution, atom density, 
and atom types.
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Why Grids?
Pros 

• clear spatial relationships 

• amazingly parallel 

• easy to interpret
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Cons 

• coordinate frame dependent 

• pairwise interactions not explicit

≠
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Training Data
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Pose Prediction

4056 protein-ligand complexes 
• diverse targets 
• wide range of affinities 
• generate poses with AutoDock Vina 
• include minimized crystal pose 

Affinity Prediction

• 8,688 low RMSD poses 
• assign known affinity 
• regression problem 
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Data Augmentation
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Model
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Results
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Trained on PDBbind refined; tested on CSAR

Clustered Cross-Validation
RMSE = 1.69 

R = 0.57 
AUC = 0.90
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Visualization
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masking gradients layer-wise relevance

1UGX
Score: 0.62
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Beyond Scoring

16https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Deep Dreams
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Beyond Scoring
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2Q89

More Oxygen Here

Less Oxygen Here
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Minimizing Low RMSD Poses

better worse
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3AO4
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Iterative Refinement
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3AO4
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Docking
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MCMC

Sampling Refinement

N (50) independent Monte Carlo chains 
Scored with grid-accelerated Vina 

Best identified pose retained

MCMC

MCMC

MCMC

MCMC

…

vina/smina/gnina

Vina

CNN

Rescoring 
CNN
pose 

affinity
best 

poses



Prospective Evaluation: D3R
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Grand Challenge 3
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cnn_docked_affinity cnn_rescore_affinity cnn_docked_scoring cnn_rescore_scoring vina

cat 0.0701 0.154 -0.0351 0.178 0.179

p38a -0.0784 -0.116 -0.329 -0.305 -0.0631

vegfr2 0.366 0.484 0.434 0.448 0.414

jak2 0.428 0.338 0.39 0.27 0.106

jak2_sub3 0.68 0.369 -0.372 0.159 -0.633

tie2 0.648 0.835 0.136 -0.078 0.561

abl1 0.634 0.745 0.005 0.182 0.713

Spearman Correlation
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Grand Challenge 3
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Grand Challenge 3
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Grand Challenge 3
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Grand Challenge 3
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GC3: Pose Prediction
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cross-docking redocking

Score Crystal Poses (24) 
CNN: R = 0.377 
Vina:  R = 0.319
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Grand Challenge 3
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Prospective Evalution: TIGIT



Can we block TIGIT/
PVR interaction with a 
small molecule?

small 
molecule



Screening
10 diverse compounds 
selected for screening 
• top ranked by Vina 
• top ranked by CNN 

Name CNN	Affinity CNN	Score Vina

Compound	1 7.69807 0.994763 85.95

Compound	2 5.57909 0.0180277 -8.12632

Compound	3 6.73692 0.0624742 -9.81935

Compound	4 6.87897 0.953488 -3.81378

Compound	5 6.32813 0.209807 -8.60293

Compound	6 5.689 0.0437 -8.991

Compound	7 4.368 0.022 -9.34722

Compound	8 4.81 0.072 -6.81787

Compound	9 5.22 0.032 -6.264

Compound	10 6.67 0.361 6.1053



Results
	

TIGIT:CD155 Interaction
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But…



and now for something 
completely different…
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Context Encoding

38http://people.eecs.berkeley.edu/~pathak/context_encoder/
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Molecular Context Encoding
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Shameless Plug
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github.com/gnina
http://bits.csb.pitt.edu
@david_koes

http://github.com/gnina
http://bits.csb.pitt.edu

